全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Dual

DOI: 10.1177/0021998319827091

Keywords: Glass fibers,polymer–matrix composites,resin transfer molding

Full-Text   Cite this paper   Add to My Lib

Abstract:

Void detection in fiber-reinforced composites traditionally relies on precise density measurements before and after the physical removal of the polymer matrix; consequently, this method only provides data on the total volume of voids within the material without information about void sizes, shapes, and distributions. Despite advances in X-ray computed tomography, it is still challenging to quantitatively and convincingly characterize void content due to the complex X-ray physics of divergent, broad-spectrum laboratory X-ray sources. Here, we demonstrate that by using aligned high-energy and low-energy X-rays, dual-energy X-ray computed tomography provides high-quality images and phase-based segmentation that allows for clear distinction between air, polymer matrix, and reinforcing fibers. We verify the method on several fiber-reinforced composite samples: epoxy-glass fiber composites fabricated by vacuum-assisted resin transfer molding and by light resin transfer molding (light resin transfer molding), and a carbon fiber composite fabricated via vacuum-assisted resin transfer molding

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133