全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Not All Larvae Stay Close to Home: Insights into Marine Population Connectivity with a Focus on the Brown Surgeonfish (Acanthurus nigrofuscus)

DOI: 10.1155/2011/518516

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent reports of localized larval recruitment in predominately small-range fishes are countered by studies that show high genetic connectivity across large oceanic distances. This discrepancy may result from the different timescales over which genetic and demographic processes operate or rather may indicate regular long-distance dispersal in some species. Here, we contribute an analysis of mtDNA cytochrome b diversity in the widely distributed Brown Surgeonfish (Acanthurus nigrofuscus; ), which revealed significant genetic structure only at the extremes of the range ( ; ). Collections from Hawaii to the Eastern Indian Ocean comprise one large, undifferentiated population. This pattern of limited genetic subdivision across reefs of the central Indo-Pacific has been observed in a number of large-range reef fishes. Conversely, small-range fishes are often deeply structured over the same area. These findings demonstrate population connectivity differences among species at biogeographic and evolutionary timescales, which likely translates into differences in dispersal ability at ecological and demographic timescales. While interspecific differences in population connectivity complicate the design of management strategies, the integration of multiscale connectivity patterns into marine resource planning will help ensure long-term ecosystem stability by preserving functionally diverse communities. 1. Introduction The recent dramatic decline of marine ecosystems [1–3] has led to an increased interest in the use of spatially explicit management strategies, such as no-take marine reserves, to promote ecosystem stability [4–9]. Yet designing marine reserves that can support a community’s ability to absorb and recover from recurrent ecosystem disturbances requires an understanding of the scale and magnitude of population connectivity for a wide range of species and environments [9–13]. While there have been a number of recent, remarkable insights into larval dispersal distances for some taxonomic groups (e.g., Damselfishes [13, 14]), the lack of data for the majority of species continues to limit the integration of dispersal dynamics into reserve planning and design. Most near-shore marine species exhibit an early pelagic larval phase (reviewed in [15, 16]) and larval duration has been repeatedly explored as a surrogate for species dispersal ability [17–20]. However, a comprehensive review found average pelagic larval duration (PLD) to be a poor predictor of genetic structure, and by extension dispersal ability, with previously reported correlations driven by

References

[1]  P. K. Dayton, S. F. Thrush, M. T. Agardy, and R. J. Hofman, “Environmental effects of marine fishing,” Aquatic Conservation: Marine and Freshwater Ecosystems, vol. 5, no. 3, pp. 205–232, 1995.
[2]  J. B. C. Jackson, M. X. Kirby, W. H. Berger et al., “Historical overfishing and the recent collapse of coastal ecosystems,” Science, vol. 293, no. 5530, pp. 629–637, 2001.
[3]  J. M. Pandolfi, R. H. Bradbury, E. Sala et al., “Global trajectories of the long-term decline of coral reef ecosystems,” Science, vol. 301, no. 5635, pp. 955–958, 2003.
[4]  B. S. Halpern and R. R. Warner, “Marine reserves have rapid and lasting effects,” Ecology Letters, vol. 5, no. 3, pp. 361–366, 2002.
[5]  D. Pauly, V. Christensen, S. Guénette et al., “Towards sustainability in world fisheries,” Nature, vol. 418, no. 6898, pp. 689–695, 2002.
[6]  F. R. Gell and C. M. Roberts, “Benefits beyond boundaries: the fishery effects of marine reserves,” Trends in Ecology and Evolution, vol. 18, no. 9, pp. 448–455, 2003.
[7]  J. Lubchenco, S. R. Palumbi, S. D. Gaines, and S. Andelman, “Plugging a hole in the ocean: the emerging science of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S3–S7, 2003.
[8]  F. Guichard, S. A. Levin, A. Hastings, and D. Siegel, “Toward a dynamic metacommunity approach to marine reserve theory,” BioScience, vol. 54, no. 11, pp. 1003–1011, 2004.
[9]  T. P. Hughes, D. R. Bellwood, C. Folke, R. S. Steneck, and J. Wilson, “New paradigms for supporting the resilience of marine ecosystems,” Trends in Ecology and Evolution, vol. 20, no. 7, pp. 380–386, 2005.
[10]  J. E. Dugan and G. E. Davis, “Applications of marine refugia to coastal fisheries management,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 50, no. 9, pp. 2029–2042, 1993.
[11]  P. F. Sale, R. K. Cowen, B. S. Danilowicz et al., “Critical science gaps impede use of no-take fishery reserves,” Trends in Ecology and Evolution, vol. 20, no. 2, pp. 74–80, 2005.
[12]  L. W. Botsford, J. W. White, M.-A. Coffroth et al., “Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs,” Coral Reefs, vol. 28, no. 2, pp. 327–337, 2009.
[13]  G. P. Jones, M. J. Millcich, M. J. Emsile, and C. Lunow, “Self-recruitment in a coral fish population,” Nature, vol. 402, no. 6763, pp. 802–804, 1999.
[14]  S. Planes, G. P. Jones, and S. R. Thorrold, “Larval dispersal connects fish populations in a network of marine protected areas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5693–5697, 2009.
[15]  D. J. Crisp, “Overview of research on marine invertebrate larvae,” in Marine Biodeterioration: An Interdisciplinary Study, J. D. Costlow and R. C. Tipper, Eds., pp. 103–126, Naval Institute Press, Annapolis, Md, USA, 1984.
[16]  R. R. Strathmann, “Hypotheses on the origins of marine larvae,” Annual Review of Ecology and Systematics, vol. 24, pp. 89–117, 1993.
[17]  A. L. Shanks, B. A. Grantham, and M. H. Carr, “Propagule dispersal distance and the size and spacing of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S159–S169, 2003.
[18]  A. L. Shanks, “Pelagic larval duration and dispersal distance revisited,” The Biological Bulletin, vol. 216, no. 3, pp. 373–385, 2009.
[19]  D. A. Siegel, B. P. Kinlan, B. Gaylord, and S. D. Gaines, “Lagrangian descriptions of marine larval dispersion,” Marine Ecology Progress Series, vol. 260, pp. 83–96, 2003.
[20]  S. E. Lester and B. I. Ruttenberg, “The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis,” Proceedings of the Royal Society B, vol. 272, no. 1563, pp. 585–591, 2005.
[21]  K. Weersing and R. J. Toonen, “Population genetics, larval dispersal, and connectivity in marine systems,” Marine Ecology Progress Series, vol. 393, pp. 1–12, 2009.
[22]  J. M. Leis and M. I. McCormick, “The biology, behavior and ecology of the pelagic larval stage of coral reef fishes,” in Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem, P. F. Sale, Ed., pp. 171–199, Academic Press, San Diego, Calif, USA, 2002.
[23]  J. N. Underwood, L. D. Smith, M. J. H. van Oppen, and J. P. Gilmour, “Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience,” Ecological Applications, vol. 19, no. 1, pp. 18–29, 2009.
[24]  B. W. Bowen, A. L. Bass, A. Muss, J. Carlin, and D. R. Robertson, “Phylogeography of two Atlantic squirrelfishes (family Holocentridae): exploring links between pelagic larval duration and population connectivity,” Marine Biology, vol. 149, no. 4, pp. 899–913, 2006.
[25]  A. G. Jones, G. I. Moore, C. Kvarnemo, D. Walker, and J. C. Avise, “Sympatric speciation as a consequence of male pregnancy in seahorses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6598–6603, 2003.
[26]  L. A. Rocha, D. R. Robertson, J. Roman, and B. W. Bowen, “Ecological speciation in tropical reef fishes,” Proceedings of the Royal Society B, vol. 272, no. 1563, pp. 573–579, 2005.
[27]  J. H. Choat, “Phylogeography and reef fishes: bringing ecology back into the argument,” Journal of Biogeography, vol. 33, no. 6, pp. 967–968, 2006.
[28]  L. A. Rocha and B. W. Bowen, “Speciation in coral-reef fishes,” Journal of Fish Biology, vol. 72, no. 5, pp. 1101–1121, 2008.
[29]  K. D. Crow, H. Munehara, and G. Bernardi, “Sympatric speciation in a genus of marine reef fishes,” Molecular Ecology, vol. 19, no. 10, pp. 2089–2105, 2010.
[30]  C. A. Farnsworth, D. R. Bellwood, and L. van Herwerden, “Genetic structure across the GBR: evidence from short-lived gobies,” Marine Biology, vol. 157, no. 5, pp. 945–953, 2010.
[31]  L. A. Rocha, A. L. Bass, D. R. Robertson, and B. W. Bowen, “Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae),” Molecular Ecology, vol. 11, no. 2, pp. 243–252, 2002.
[32]  D. R. Bellwood and R. Fisher, “Relative swimming speeds in reef fish larvae,” Marine Ecology Progress Series, vol. 211, pp. 299–303, 2001.
[33]  G. Gerlach, J. Atema, M. J. Kingsford, K. P. Black, and V. Miller-Sims, “Smelling home can prevent dispersal of reef fish larvae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 858–863, 2007.
[34]  R. K. Cowen and S. Sponaugle, “Larval dispersal and marine population connectivity,” Annual Review of Marine Science, vol. 1, pp. 443–466, 2009.
[35]  S. E. Swearer, J. E. Caselle, D. W. Lea, and R. R. Warner, “Larval retention and recruitment in an island population of a coral-reef fish,” Nature, vol. 402, no. 6763, pp. 799–802, 1999.
[36]  G. P. Jones, S. Planes, and S. R. Thorrold, “Coral reef fish larvae settle close to home,” Current Biology, vol. 15, no. 14, pp. 1314–1318, 2005.
[37]  G. R. Almany, M. L. Berumen, S. R. Thorrold, S. Planes, and G. P. Jones, “Local replenishment of coral reef fish populations in a marine reserve,” Science, vol. 316, no. 5825, pp. 742–744, 2007.
[38]  H. M. Patterson and S. E. Swearer, “Long-distance dispersal and local retention of larvae as mechanisms of recruitment in an island population of a coral reef fish,” Austral Ecology, vol. 32, no. 2, pp. 122–130, 2007.
[39]  J. Carreras-Carbonell, E. Macpherson, and M. Pascual, “High self-recruitment levels in a Mediterranean littoral fish population revealed by microsatellite markers,” Marine Biology, vol. 151, no. 2, pp. 719–727, 2007.
[40]  P. J. Doherty and D. M. Williams, “The replenishment of coral reef populations,” Oceanography and Marine Biology, vol. 26, pp. 487–551, 1988.
[41]  P. F. Sale, “Reef fish communities: open nonequilibrium systems,” in The Ecology of Fishes on Coral Reefs, P. F. Sale, Ed., pp. 564–598, Academic Press, San Diego, Calif, USA, 1991.
[42]  M. J. Caley, M. H. Carr, M. A. Hixon, T. P. Hughes, G. P. Jones, and B. A. Menge, “Recruitment and the local dynamics of open marine populations,” Annual Review of Ecology and Systematics, vol. 27, pp. 477–500, 1996.
[43]  P. Doherty and T. Fowler, “An empirical test of recruitment limitation in a coral reef fish,” Science, vol. 263, no. 5149, pp. 935–939, 1994.
[44]  G. P. Jones, G. R. Almany, G. R. Russ et al., “Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges,” Coral Reefs, vol. 28, no. 2, pp. 307–325, 2009.
[45]  D. Jablonski and R. A. Lutz, “Larval ecology of marine benthic invertebrates: paleobiological implications,” Biological Reviews, vol. 58, no. 1, pp. 21–89, 1983.
[46]  J. H. Brown, G. C. Stevens, and D. M. Kaufman, “The geographic range: size, shape, boundaries, and internal structure,” Annual Review of Ecology and Systematics, vol. 27, pp. 597–623, 1996.
[47]  C. Mora and D. R. Robertson, “Causes of latitudinal gradients in species richness: a test with fishes of the tropical eastern pacific,” Ecology, vol. 86, no. 7, pp. 1771–1782, 2005.
[48]  G. Paulay and C. Meyer, “Dispersal and divergence across the greatest ocean region: do larvae matter?” Integrative and Comparative Biology, vol. 46, no. 3, pp. 269–281, 2006.
[49]  G. M. Wellington and B. C. Victor, “Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae),” Marine Biology, vol. 101, no. 4, pp. 557–567, 1989.
[50]  S. E. Lester, B. I. Ruttenberg, S. D. Gaines, and B. P. Kinlan, “The relationship between dispersal ability and geographic range size,” Ecology Letters, vol. 10, no. 8, pp. 745–758, 2007.
[51]  B. P. Kinlan and S. D. Gaines, “Propagule dispersal in marine and terrestrial environments: a community perspective,” Ecology, vol. 84, no. 8, pp. 2007–2020, 2003.
[52]  I. R. Bradbury and P. Bentzen, “Non-linear genetic isolation by distance: implications for dispersal estimation in anadromous and marine fish populations,” Marine Ecology Progress Series, vol. 340, pp. 245–257, 2007.
[53]  D. Jablonski, “Larval ecology and macroevolution in marine invertebrates,” Bulletin of Marine Science, vol. 39, no. 2, pp. 565–587, 1986.
[54]  R. B. Emlet, “Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea),” Evolution, vol. 49, no. 3, pp. 476–489, 1995.
[55]  M. A. J. Rivera, C. D. Kelley, and G. K. Roderick, “Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses,” Biological Journal of the Linnean Society, vol. 81, no. 3, pp. 449–468, 2004.
[56]  M. T. Craig, J. A. Eble, B. W. Bowen, and D. R. Robertson, “High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae),” Marine Ecology Progress Series, vol. 334, pp. 245–254, 2007.
[57]  M. L. Ramon, P. A. Nelson, E. De Martini, W. J. Walsh, and G. Bernardi, “Phylogeography, historical demography, and the role of post-settlement ecology in two Hawaiian damselfish species,” Marine Biology, vol. 153, no. 6, pp. 1207–1217, 2008.
[58]  J. A. Eble, R. J. Toonen, and B. W. Bowen, “Endemism and dispersal: comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago,” Marine Biology, vol. 156, no. 4, pp. 689–698, 2009.
[59]  M. T. Craig, J. A. Eble, and B. W Bowen, “Origins, ages, and population histories: comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon),” Journal of Biogeography, vol. 37, pp. 2125–2136, 2010.
[60]  L. Fishelson, A. H. Montgomery, and A. H. Myrberg Jr., “Biology of the surgeonfish Acanthurus nigrofuscus with emphasis on change over in diet and gonadal cycles,” Marine Ecology Progress Series, vol. 39, pp. 37–47, 1987.
[61]  M. L. Domeier and P. L. Colin, “Tropical reef fish spawning aggregations: defined and reviewed,” Bulletin of Marine Science, vol. 60, no. 3, pp. 698–726, 1997.
[62]  J. E. Randall, Reef and Shore Fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands, University of Hawaii Press, Honolulu, Hawaii, USA, 2005.
[63]  J. C. Briggs, Marine Zoogeography, McGraw–Hill, New York, NY, USA, 1974.
[64]  J. E. Randall, Reef and Shore Fishes of the Hawaiian Islands, University of Hawaii Sea Grant Program, Honolulu, Hawaii, USA, 2007.
[65]  H. A. Lessios, “The great American schism: divergence of marine organisms after the rise of the Central american Isthmus,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 63–91, 2008.
[66]  T. S. Daly-Engel, R. D. Grubbs, K. A. Feldheim, B. W. Bowen, and R. J. Toonen, “Is multiple mating beneficial or unavoidable? Low multiple paternity and genetic diversity in the shortspine spurdog Squalus mitsukurii,” Marine Ecology Progress Series, vol. 403, pp. 255–267, 2010.
[67]  A. J. Bohonak, “Dispersal, gene flow, and population structure,” Quarterly Review of Biology, vol. 74, no. 1, pp. 21–45, 1999.
[68]  M. R. Gaither, R. J. Toonen, D. R. Robertson, S. Planes, and B. W. Bowen, “Genetic evaluation of marine biogeographic barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus spp.),” Journal of Biogeography, vol. 37, no. 1, pp. 133–147, 2010.
[69]  R. J. Toonen, K. R. Andrews, and I. B. Baums, “Defining boundaries for Ecosystem-based management: a multispecies case study of marine connectivity across the Hawaiian Archipelago,” Journal of Marine Biology. In press.
[70]  J. C. Avise, Molecular Markers, Natural History, and eEvolution, Sinauer Associates, Sunderland, Mass, USA, 2004.
[71]  M. E. Hellberg, R. S. Burton, J. E. Neigel, and S. R. Palumbi, “Genetic assessment of connectivity among marine populations,” Bulletin of Marine Science, vol. 70, no. 1, pp. 273–290, 2002.
[72]  W. H. Lowe and F. W. Allendorf, “What can genetics tell us about population connectivity?” Molecular Ecology, vol. 19, no. 15, pp. 3038–3051, 2010.
[73]  F. Rousset, “Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance,” Genetics, vol. 145, no. 4, pp. 1219–1228, 1997.
[74]  R. S. Waples, “Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species,” Journal of Heredity, vol. 89, no. 5, pp. 438–450, 1998.
[75]  R. S. Waples and O. Gaggiotti, “What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity,” Molecular Ecology, vol. 15, no. 6, pp. 1419–1439, 2006.
[76]  G. Luikart, P. R. England, D. Tallmon, S. Jordan, and P. Taberlet, “The power and promise of population genomics: from genotyping to genome typing,” Nature Reviews Genetics, vol. 4, no. 12, pp. 981–994, 2003.
[77]  P. Sunnucks and D. F. Hales, “Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae),” Molecular Biology and Evolution, vol. 13, no. 3, pp. 510–524, 1996.
[78]  C. B. Song, T. J. Near, and L. M. Page, “Phylogenetic Relations among Percid Fishes as Inferred from Mitochondrial Cytochrome b DNA Sequence Data,” Molecular Phylogenetics and Evolution, vol. 10, no. 3, pp. 343–353, 1998.
[79]  P. Taberlet, A. Meyer, and J. Bouvert, “Unusually large mitochondrial variation in populations of the blue tit, Parus caeruleus,” Molecular Ecology, vol. 1, pp. 27–36, 1992.
[80]  K. Katoh, K. Misawa, K.-I. Kuma, and T. Miyata, “MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform,” Nucleic Acids Research, vol. 30, no. 14, pp. 3059–3066, 2002.
[81]  L. Excoffier, L. G. Laval, and S. Schneider, “Arlequin ver 3.0: an integrated software package for population genetics data analysis,” Evolutionary Biology Online, vol. 1, pp. 47–50, 2005.
[82]  M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, NY, USA, 1987.
[83]  M. Clement, D. Posada, and K. A. Crandall, “TCS: a computer program to estimate gene genealogies,” Molecular Ecology, vol. 9, no. 10, pp. 1657–1659, 2000.
[84]  I. Dupanloup, S. Schneider, and L. Excoffier, “A simulated annealing approach to define the genetic structure of populations,” Molecular Ecology, vol. 11, no. 12, pp. 2571–2581, 2002.
[85]  K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993.
[86]  H. Akaike, “A new look at statistical model identification,” IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.
[87]  D. Posada and K. A. Crandall, “MODELTEST: testing the model of DNA substitution,” Bioinformatics, vol. 14, no. 9, pp. 817–818, 1998.
[88]  L. Jost, “ and its relatives do not measure differentiation,” Molecular Ecology, vol. 17, no. 18, pp. 4015–4026, 2008.
[89]  S. Wright, “Isolation by distance,” Genetics, vol. 28, pp. 114–138, 1943.
[90]  M. Slatkin, “Isolation by distance in equilibrium and nonequilibrium populations,” Evolution, vol. 47, pp. 264–279, 1993.
[91]  Y.-X. Fu, “Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection,” Genetics, vol. 147, no. 2, pp. 915–925, 1997.
[92]  A. M. Hart and G. R. Russ, “Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus,” Marine Ecology Progress Series, vol. 136, no. 1-3, pp. 25–35, 1996.
[93]  H. A. Lessios, “The great American schism: divergence of marine organisms after the rise of the Central american Isthmus,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 63–91, 2008.
[94]  W. S. Grant and B. W. Bowen, “Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation,” Journal of Heredity, vol. 89, no. 5, pp. 415–426, 1998.
[95]  D. I. Benn and D. J. A. Evans, Glaciers and Glaciation, Oxford University Press, New York, NY, USA, 1997.
[96]  K. M. Ibrahim, R. A. Nichols, and G. M. Hewitt, “Spatial patterns of genetic variation generated by different forms of dispersal during range expansion,” Heredity, vol. 77, no. 3, pp. 282–291, 1996.
[97]  I. R. Bradbury and P. Bentzen, “Non-linear genetic isolation by distance: implications for dispersal estimation in anadromous and marine fish populations,” Marine Ecology Progress Series, vol. 340, pp. 245–257, 2007.
[98]  D. W. Hutchison and A. R. Templeton, “Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability,” Evolution, vol. 53, no. 6, pp. 1898–1914, 1999.
[99]  R. Cudney-Bueno, M. F. Lavín, S. G. Marinone, P. T. Raimondi, and W. W. Shaw, “Rapid effects of marine reserves via larval dispersal,” PLoS ONE, vol. 4, no. 1, Article ID e4140, 2009.
[100]  C. White, K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacherl, and R. J. Toonen, “Ocean currents help explain population genetic structure,” Proceedings of the Royal Society B, vol. 277, no. 1688, pp. 1685–1694, 2010.
[101]  F. Bonjean and G. S. E. Lagerloef, “Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean,” Journal of Physical Oceanography, vol. 32, no. 10, pp. 2938–2954, 2002.
[102]  B. W. Bowen, A. L. Bass, L. A. Rocha, W. S. Grant, and D. R. Robertson, “Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale,” Evolution, vol. 55, no. 5, pp. 1029–1039, 2001.
[103]  S. Planes and C. Fauvelot, “Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean,” Evolution, vol. 56, no. 2, pp. 378–399, 2002.
[104]  J. B. Horne, L. van Herwerden, J. H. Choat, and D. R. Robertson, “High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners,” Molecular Phylogenetics and Evolution, vol. 49, no. 2, pp. 629–638, 2008.
[105]  J. S. Reece, B. W. Bowen, K. Joshi, V. Goz, and A. Larson, “Phylogeography of two moray eels indicates high dispersal throughout the INDO-PACIFIC,” Journal of Heredity, vol. 101, no. 4, pp. 391–402, 2010.
[106]  J. K. Schultz, R. L. Pyle, E. DeMartini, and B. W. Bowen, “Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus,” Marine Biology, vol. 151, no. 1, pp. 167–175, 2007.
[107]  B. W. Bowen, A. Muss, L. A. Rocha, and W. S. Grant, “Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean,” Journal of Heredity, vol. 97, no. 1, pp. 1–12, 2006.
[108]  O. S. Klanten, J. H. Choat, and L. Van Herwerden, “Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish,” Marine Biology, vol. 150, no. 4, pp. 659–670, 2007.
[109]  J. D. DiBattista, C. Wilcox, M. T. Craig, L. A. Rocha, and B. W. Bowen, “Phylogeographic survey of the Bluelined surgeonfish, Acanthurus nigroris, reveals high connectivity and a cryptic endemic species in the Hawaiian Archipelago,” Journal of Marine Biology. In press.
[110]  J. C. Briggs, Global Biogeography, Elsevier, Amsterdam, The Netherlands, 1995.
[111]  J. E. N. Vernon, Coral in Space and Time, Cornell University Press, Ithaca, NY, USA, 1995.
[112]  J. E. Randall, “Zoogeography of shore fishes of the Indo-Pacific region,” Zoological Studies, vol. 37, no. 4, pp. 227–268, 1998.
[113]  J. A. Hobbs, A. J. Frisch, G. R. Allen, and L. Van Herwerden, “Marine hybrid hotspot at Indo-Pacific biogeographic border,” Biology Letters, vol. 5, no. 2, pp. 258–261, 2009.
[114]  L. van Herwerden, J. H, Choat, S. J. Newman, M. Leray, and G. Hillers?y, “Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management,” Marine Biology, vol. 156, no. 8, pp. 1595–1607, 2009.
[115]  J. Drew, G. R. Allen, L. Kaufman, and P. H. Barber, “Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes,” Conservation Biology, vol. 22, no. 4, pp. 965–975, 2008.
[116]  J. Timm, M. Figiel, and M. Kochzius, “Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity,” Molecular Phylogenetics and Evolution, vol. 49, no. 1, pp. 268–276, 2008.
[117]  J. Timm and M. Kochzius, “Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris),” Molecular Ecology, vol. 17, no. 18, pp. 3999–4014, 2008.
[118]  J. A. Drew, G. R. Allen, and M. V. Erdmann, “Congruence between mitochondrial genes and color morphs in a coral reef fish: population variability in the Indo-Pacific damselfish Chrysiptera rex (Snyder, 1909),” Coral Reefs, vol. 29, no. 2, pp. 439–444, 2010.
[119]  J. Drew and P. H. Barber, “Sequential cladogenesis of the reef fish Pomacentrus moluccensis (Pomacentridae) supports the peripheral origin of marine biodiversity in the Indo-Australian archipelago,” Molecular Phylogenetics and Evolution, vol. 53, no. 1, pp. 335–339, 2009.
[120]  J. K. Schultz, K. A. Feldheim, S. H. Gruber, M. V. Ashley, T. M. McGovern, and B. W. Bowen, “Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion),” Molecular Ecology, vol. 17, no. 24, pp. 5336–5348, 2008.
[121]  S. Ekman, Zoogeography of the Sea, Sidwick & Jackson, London, UK, 1953.
[122]  H. A. Lessios and D. R. Robertson, “Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier,” Proceedings of the Royal Society B, vol. 273, no. 1598, pp. 2201–2208, 2006.
[123]  E. Bazin, S. Glémin, and N. Galtier, “Population size does not influence mitochondrial genetic diversity in animals,” Science, vol. 312, no. 5773, pp. 570–572, 2006.
[124]  F. Prugnolle and T. de Meeus, “Inferring sex-biased dispersal from population genetic tools: a review,” Heredity, vol. 88, no. 3, pp. 161–165, 2002.
[125]  B. W. Bowen, A. L. Bass, L. Soares, and R. J. Toonen, “Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta),” Molecular Ecology, vol. 14, no. 8, pp. 2389–2402, 2005.
[126]  M. R. Christie, D. W. Johnson, C. D. Stallings, and M. A. Hixon, “Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish,” Molecular ecology, vol. 19, no. 5, pp. 1042–1057, 2010.
[127]  C. Mora and P. F. Sale, “Are populations of coral reef fish open or closed?” Trends in Ecology and Evolution, vol. 17, no. 9, pp. 422–428, 2002.
[128]  B. P. Kinlan, S. D. Gaines, and S. E. Lester, “Propagule dispersal and the scales of marine community process,” Diversity and Distributions, vol. 11, no. 2, pp. 139–148, 2005.
[129]  R. K. Cowen, C. B. Paris, and A. Srinivasan, “Scaling of connectivity in marine populations,” Science, vol. 311, no. 5760, pp. 522–527, 2006.
[130]  C. E. Bird, B. S. Holland, B. W. Bowen, and R. J. Toonen, “Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories,” Molecular Ecology, vol. 16, no. 15, pp. 3173–3186, 2007.
[131]  P. L. Colin, “Fishes as living tracers of connectivity in the tropical western North Atlantic: I. Distribution of the neon gobies, genus Elacatinus (Pisces: Gobiidae),” Zootaxa, no. 2370, pp. 36–52, 2010.
[132]  G. P. Jones, M. Srinivasan, and G. R. Almany, “Population connectivity and conservation of marine biodiversity,” Oceanography, vol. 20, pp. 42–53, 2007.
[133]  C. M. Roberts, J. A. Bohnsack, F. Gell, J. P. Hawkins, and R. Goodridge, “Effects of marine reserves on adjacent fisheries,” Science, vol. 294, no. 5548, pp. 1920–1923, 2001.
[134]  B. S. Halpern and R. R. Warner, “Matching marine reserve design to reserve objectives,” Proceedings of the Royal Society B, vol. 270, no. 1527, pp. 1871–1878, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133