全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

“Coral Dominance”: A Dangerous Ecosystem Misnomer?

DOI: 10.1155/2011/164127

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over 100 years ago, before threats such as global climate change and ocean acidification were issues engrossing marine scientists, numerous tropical reef biologists began expressing concern that too much emphasis was being placed on coral dominance in reef systems. These researchers believed that the scientific community was beginning to lose sight of the overall mix of calcifying organisms necessary for the healthy function of reef ecosystems and demonstrated that some reefs were naturally coral dominated with corals being the main organisms responsible for reef accretion, yet other healthy reef ecosystems were found to rely almost entirely on calcified algae and foraminifera for calcium carbonate accumulation. Despite these historical cautionary messages, many agencies today have inherited a coral-centric approach to reef management, likely to the detriment of reef ecosystems worldwide. For example, recent research has shown that crustose coralline algae, a group of plants essential for building and cementing reef systems, are in greater danger of exhibiting decreased calcification rates and increased solubility than corals in warmer and more acidic ocean environments. A shift from coral-centric views to broader ecosystem views is imperative in order to protect endangered reef systems worldwide. 1. Introduction Around the globe, tropical to subtropical reef ecosystems are at risk. Environmental threats in the form of pollution, overfishing, alien species, global warming, and ocean acidification have led to the documented decline of coral communities in numerous marine ecosystems [1–9] and allowed macroalgal overgrowth to result in potentially nonreversible phase shifts in many locations [5, 10–14]. Management efforts will hopefully help to preserve and protect the imperiled ecosystems in which corals live; however, scientific terminology may be thwarting responsible conservation efforts by creating false representations of tropical to subtropical reefs in the minds of the general public and governmental management agencies. Many reef systems contain areas composed primarily of coral, but these areas are interspersed among other types of ecologically necessary, hard-bottomed, carbonate-accreting, reef areas that contain little to no coral. Recognition of the essential role these noncoral-dominated reef areas play to the overall health status and accretion of reef ecosystems will help to ensure that effective reef management measures are accomplished. 2. What Constitutes a Healthy Reef? Reef researchers from past decades described many healthy tropical

References

[1]  T. P. Hughes, A. H. Baird, D. R. Bellwood et al., “Climate change, human impacts, and the resilience of coral reefs,” Science, vol. 301, no. 5635, pp. 929–933, 2003.
[2]  T. P. Hughes, M. J. Rodrigues, D. R. Bellwood et al., “Phase shifts, herbivory, and the resilience of coral reefs to climate change,” Current Biology, vol. 17, no. 4, pp. 360–365, 2007.
[3]  J. M. Pandolfi, R. H. Bradbury, E. Sala et al., “Global trajectories of the long-term decline of coral reef ecosystems,” Science, vol. 301, no. 5635, pp. 955–958, 2003.
[4]  J. M. Pandolfi, J. B. C. Jackson, N. Baron et al., “Are U.S. coral reefs on the slippery slope to slime?” Science, vol. 307, no. 5716, pp. 1725–1726, 2005.
[5]  D. R. Bellwood, T. P. Hughes, C. Folke, and M. Nystr?m, “Confronting the coral reef crisis,” Nature, vol. 429, no. 6994, pp. 827–833, 2004.
[6]  J. F. Bruno and E. R. Selig, “Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons,” PLoS One, vol. 2, no. 8, article e711, 2007.
[7]  M. H. Ledlie, N. A. J. Graham, J. C. Bythell et al., “Phase shifts and the role of herbivory in the resilience of coral reefs,” Coral Reefs, vol. 26, no. 3, pp. 641–653, 2007.
[8]  M. Adjeroud, F. Michonneau, P. J. Edmunds et al., “Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef,” Coral Reefs, vol. 28, no. 3, pp. 775–780, 2009.
[9]  E. Vivekanandan, M. H. Ali, B. Jasper, and M. Rajagopalan, “Vulnerability of corals to warming of the Indian seas: a projection for the 21st century,” Current Science, vol. 97, no. 11, pp. 1654–1658, 2009.
[10]  T. Done, E. Turak, M. Wakeford, L. DeVantier, A. McDonald, and D. Fisk, “Decadal changes in turbid-water coral communities at pandora reef: loss of resilience or too soon to tell?” Coral Reefs, vol. 26, no. 4, pp. 789–805, 2007.
[11]  J. B. C. Jackson, M. X. Kirby, W. H. Berger et al., “Historical overfishing and the recent collapse of coastal ecosystems,” Science, vol. 293, no. 5530, pp. 629–637, 2001.
[12]  J. W. McManus and J. F. Polsenberg, “Coral-algal phase shifts on coral reefs: ecological and environmental aspects,” Progress in Oceanography, vol. 60, no. 2–4, pp. 263–279, 2004.
[13]  T. P. Hughes, “Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef,” Science, vol. 265, no. 5178, pp. 1547–1551, 1994.
[14]  M. J. Shulman and D. R. Robertson, “Changes in the coral reefs of San Bias, Caribbean Panama: 1983 to 1990,” Coral Reefs, vol. 15, no. 4, pp. 231–236, 1996.
[15]  M. J. Shulman and D. R. Robertson, “Three cruises of the Blake,” Bulletin of the Museum of Comparative Zoology at Harvard College, vol. 14, no. 4, pp. 1–314, 1888.
[16]  A. E. Finckh, “Biology of the reef-forming organisms at Funafuti Atoll, Section VI,” in The Atoll of Funafuti, Report of the Coral Reef Committee, pp. 125–150, Royal Society, London, UK, 1904.
[17]  M. A. Howe, “The building of “coral” reefs,” Science, vol. 35, no. 909, pp. 837–842, 1912.
[18]  W. A. Setchell, “Coral reefs as zonational plant formations,” Science, vol. 68, no. 1754, pp. 119–121, 1928.
[19]  A. Weber-van Bosse and M. Foslie, “The corallinaceae of the siboga-expedition,” in Siboga-Expeditie, E. J. Brill, Ed., vol. 61, pp. 1–110, Leiden, The Netherlands, 1904.
[20]  J. R. Bryan and P. F. Huddlestun, “Correlation and age of the Bridgeboro Limestone, a coralgal limestone from southwestern Georgia,” Journal of Paleontology, vol. 65, no. 5, pp. 864–868, 1991.
[21]  J. A. Fagerstrom and O. Weidlich, “Biologic response to environmental stress in tropical reefs: lessons from modern Polynesian coralgal atolls and Middle Permian sponge and Shamovella-microbe reefs (Capitan Limestone USA),” Facies, vol. 51, no. 1–4, pp. 517–531, 2005.
[22]  P. S. Vroom, C. A. Musburger, S. W. Cooper, J. E. Maragos, K. N. Page-Albins, and M. A.V. Timmers, “Marine biological community baselines in unimpacted tropical ecosystems: spatial and temporal analysis of reefs at Howland and Baker Islands,” Biodiversity and Conservation, vol. 19, no. 3, pp. 797–812, 2010.
[23]  P. S. Vroom and C. L. Braun, “What is the benthic composition of a healthy subtropical reef? Baseline species-level percent cover, with an emphasis on reef algae, in the Northwestern Hawaiian Islands,” Plos One, vol. 5, no. 3, Article ID e9733, 2010.
[24]  C. F. Barbosa, M. D. F. Prazeres, B. P. Ferreira, and J. C. S. Seoane, “Foraminiferal assemblage and reef check census in coral reef health monitoring of East Brazilian margin,” Marine Micropaleontology, vol. 73, no. 1-2, pp. 62–69, 2009.
[25]  J. D. Schueth and T. D. Frank, “Reef foraminifera as bioindicators of coral reef health: low isles reef, Northern Great Barrier Reef, Australia,” Journal of Foraminiferal Research, vol. 38, no. 1, pp. 11–22, 2008.
[26]  D. Fautin, P. Dalton, L. S. Incze, et al., “An overview of marine biodiversity in United States waters,” PLoS One, vol. 5, no. 8, Article ID e11914, 2010.
[27]  S. C. Jameson, M. V. Erdmann, J. R. Karr, and K. W. Potts, “Charting a course toward diagnostic monitoring: a continuing review of coral reef attributes and a research strategy for creating coral reef indexes of biotic integrity,” Bulletin of Marine Science, vol. 69, no. 2, pp. 701–744, 2001.
[28]  P. Bradley, W. S. Fisher, H. Bell et al., “Development and implementation of coral reef biocriteria in U.S. jurisdictions,” Environmental Monitoring and Assessment, vol. 150, no. 1–4, pp. 43–51, 2009.
[29]  R. S. Appeldoorn, “Transforming reef fisheries management: application of an ecosystem-based approach in the USA Caribbean,” Environmental Conservation, vol. 35, no. 3, pp. 232–241, 2008.
[30]  P. J. Mumby, “Phase shifts and the stability of macroalgal communities on Caribbean coral reefs,” Coral Reefs, vol. 28, no. 3, pp. 761–773, 2009.
[31]  I. A. Leiper, U. E. Siebeck, N. J. Marshall, and S. R. Phinn, “Coral health monitoring: linking coral colour and remote sensing techniques,” Canadian Journal of Remote Sensing, vol. 35, no. 3, pp. 276–286, 2009.
[32]  H. Huang, J. Lian, X. Huang, L. Huang, R. Zou, and D. Wang, “Coral cover as a proxy of disturbance: a case study of the biodiversity of the hermatypic corals in Yongxing Island, Xisha Islands in the South China Sea,” Chinese Science Bulletin, vol. 51, no. 2, pp. 129–135, 2006.
[33]  A. J. Uychiaoco, H. O. Arceo, S. J. Green, M. T. De La Cruz, P. A. Gaite, and P. M. Ali?o, “Monitoring and evaluation of reef protected areas by local fishers in the Philippines: tightening the adaptive management cycle,” Biodiversity and Conservation, vol. 14, no. 11, pp. 2775–2794, 2005.
[34]  H. T. Odum and E. P. Odum, “Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll,” Ecological Monographs, vol. 25, no. 3, pp. 291–320, 1955.
[35]  A. Gepp and E. S. Gepp, “The codiaceae of the siboga expedition,” in Monographs of the Siboga Expedition, E. J. Brill, Ed., vol. 62, p. 150, Leiden, The Netherlands, 1911.
[36]  E. S. Barton, “The genus halimeda,” in Monographs of the Siboga Expedition, E. J. Brill, Ed., vol. 60, p. 32, Leiden, The Netherlands, 1901.
[37]  C. Miller and V. Kosmynin, “The effects of hurricane-deposited mud on coral communities in Florida,” in Proceedings of the 11th International Coral Reef Symposium, vol. 1-2, pp. 1–1425, Fort Lauderdale, Fla, USA, July 2008.
[38]  J. C. Kenyon, R. E. Brainard, R. K. Hoeke, F. A. Parrish, and C. B. Wilkinson, “Towed-diver surveys, a method for mesoscale spatial assessment of Benthic Reef habitat: a case study at Midway Atoll in the Hawaiian Archipelago,” Coastal Management, vol. 34, no. 3, pp. 339–349, 2006.
[39]  P. S. Vroom, K. N. Page, J. C. Kenyon, and R. E. Brainard, “Algae-dominated reefs,” American Scientist, vol. 94, no. 5, pp. 430–437, 2006.
[40]  P. S. Vroom and M. A. V. Timmers, “Spatial and temporal comparison of algal biodiversity and benthic cover at gardner pinnacles, Northwestern Hawaiian Islands,” Journal of Phycology, vol. 45, no. 2, pp. 337–347, 2009.
[41]  R. C. Baron-Szabo, A. Schafhauser, S. G?tz, and W. Stinnesbeck, “Scleractinian corals from the cardenas formation (Maastrichtian), San Luis Potosí, Mexico,” Journal of Paleontology, vol. 80, no. 6, pp. 1033–1046, 2006.
[42]  J. M. Pandolfi, “A new, extinct Pleistocene reef coral from the Montastraea "annularis" species complex,” Journal of Paleontology, vol. 31, no. 3, pp. 472–482, 2007.
[43]  S. Schroeder, “Stratigraphy and systematics of rugose corals from the Givetian and sub-Frasnian regions of the Rheinisches Schiefergebirg (Sauerland/Bergisches Land),” Zitteliana Reihe B, vol. 25, no. 3, pp. 39–116, 2005.
[44]  R. B. Aronson, I. G. Macintyre, A. M. Moesinger, et al., “History of reef coral assemblages on the rhomboid shoals of belize,” Smithsonian Contributions to the Marine Sciences, vol. 38, pp. 313–321, 2009.
[45]  C. M. Wapnick, W. F. Precht, and R. B. Aronson, “Millennial-scale dynamics of staghorn coral in Discovery Bay, Jamaica,” Ecology Letters, vol. 7, no. 4, pp. 354–361, 2004.
[46]  W. H. Adey, “Coral reef morphogenesis: a multidimensional model,” Science, vol. 202, no. 4370, pp. 831–837, 1978.
[47]  P. Houk and J. Starmer, “Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands,” Coral Reefs, vol. 29, no. 1, pp. 59–70, 2010.
[48]  R. Villa?a, A. C. Fonseca, V. K. Jensen, and B. Knoppers, “Species composition and distribution of macroalgae on Atol das Rocas, Brazil, SW Atlantic,” Botanica Marina, vol. 53, no. 2, pp. 113–122, 2010.
[49]  O. N. Dragastan and H.-G. Herbig, “Halimeda (green siphonous algae) from the paleogene of (Morocco)—taxonomy, phylogeny and paleoenvironment,” Micropaleontology, vol. 53, no. 1-2, pp. 1–72, 2007.
[50]  J. N. Harney and C. H. Fletcher III, “A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii,” Journal of Sedimentary Research, vol. 73, no. 6, pp. 856–868, 2003.
[51]  J. M. Martín, J. C. Braga, and R. Riding, “Late Miocene Halimeda alga-microbial segment reefs in the marginal Mediterranean Sorbas Basin, Spain,” Sedimentology, vol. 44, no. 3, pp. 441–456, 1997.
[52]  S. A. Rees, B. N. Opdyke, P. A. Wilson, and T. J. Henstock, “Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia,” Coral Reefs, vol. 26, no. 1, pp. 177–188, 2007.
[53]  J. S. Gardiner, “The coral reefs of Funafuti, Rotuma, and Fiji, together with some notes on the structure and formation of coral reefs in general,” Proceedings of the Cambridge Philosophical Society, vol. 9, pp. 417–503, 1898.
[54]  J. S. Gardiner, The Fauna and Geography of the Maldive and Laccadive archipelagoes: Being the Account of the Work Carried on and of the Collections Made by an Expedition During the years 1899 and 1900, Cambridge University Press, 1901.
[55]  A. Agassiz, “A visit to the Bermudas in March, 1894,” Bulletin of the Museum of Comparative Zoology at Harvard College, vol. 26, pp. 205–281, 1895.
[56]  H. B. Bigelow, “Contributions from the bermuda biological station for research—no. 5: the shoal water deposits of the Bermuda banks,” Proceedings of the American Academy of Arts and Sciences, vol. 40, pp. 557–597, 1905.
[57]  D. F. M. Gherardi and D. W. J. Bosence, “Composition and community structure of the coralline algal reefs from Atol das Rocas, South Atlantic, Brazil,” Coral Reefs, vol. 19, no. 3, pp. 205–219, 2001.
[58]  A. Radwański, M. Górka, and A. Wysocka, “Middle miocene coralgal facies at Maksymivka near Ternopil (Ukraine): a preliminary account,” Acta Geologica Polonica, vol. 56, no. 1, pp. 89–103, 2006.
[59]  J. M. Webster, D. A. Clague, J. C. Braga et al., “Drowned coralline algal dominated deposits off Lanai, Hawaii; carbonate accretion and vertical tectonics over the last 30?ka,” Marine Geology, vol. 225, no. 1–4, pp. 223–246, 2006.
[60]  M.-F. Benisek, C. Betzler, G. Marcano, and M. Mutti, “Coralline-algal assemblages of a Burdigalian platform slope: implications for carbonate platform reconstruction (northern Sardinia, western Mediterranean Sea),” Facies, vol. 55, no. 3, pp. 375–386, 2009.
[61]  J. M. Pandolfi and J. B. C. Jackson, “Algae, corals, and reef health,” American Scientist, vol. 95, p. 5, 2007.
[62]  P. S. Vroom, K. N. Page, K. A. Peyton, and J. K. Kukea-Shultz, “Spatial heterogeneity of benthic community assemblages with an emphasis on reef algae at French Frigate Shoals, Northwestern Hawai'ian Islands,” Coral Reefs, vol. 24, no. 4, pp. 574–581, 2005.
[63]  K. R. N. Anthony, D. I. Kline, G. Diaz-Pulido, S. Dove, and O. Hoegh-Guldberg, “Ocean acidification causes bleaching and productivity loss in coral reef builders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 45, pp. 17442–17446, 2008.
[64]  S. Martin and J.-P. Gattuso, “Response of Mediterranean coralline algae to ocean acidification and elevated temperature,” Global Change Biology, vol. 15, no. 8, pp. 2089–2100, 2009.
[65]  J. E. N. Veron, O. Hoegh-Guldberg, T. M. Lenton et al., “The coral reef crisis: the critical importance of ?ppm ,” Marine Pollution Bulletin, vol. 58, no. 10, pp. 1428–1436, 2009.
[66]  I. B. Kuffner, A. J. Andersson, P. L. Jokiel, K. S. Rodgers, and F. T. MacKenzie, “Decreased abundance of crustose coralline algae due to ocean acidification,” Nature Geoscience, vol. 1, no. 2, pp. 114–117, 2008.
[67]  P. L. Jokiel, K. S. Rodgers, I. B. Kuffner, A. J. Andersson, E. F. Cox, and F. T. Mackenzie, “Ocean acidification and calcifying reef organisms: a mesocosm investigation,” Coral Reefs, vol. 27, no. 3, pp. 473–483, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133