全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

A scalable and extensible checkpointing scheme for massively parallel simulations

DOI: 10.1177/1094342018767736

Keywords: Resilience,checkpoint-restart,supercomputing,scalable parallel algorithms,parallel performance,HPC,ULFM,MPI

Full-Text   Cite this paper   Add to My Lib

Abstract:

Realistic simulations in engineering or in the materials sciences can consume enormous computing resources and thus require the use of massively parallel supercomputers. The probability of a failure increases both with the runtime and with the number of system components. For future exascale systems, it is therefore considered critical that strategies are developed to make software resilient against failures. In this article, we present a scalable, distributed, diskless, and resilient checkpointing scheme that can create and recover snapshots of a partitioned simulation domain. We demonstrate the efficiency and scalability of the checkpoint strategy for simulations with up to 40 billion computational cells executing on more than 400 billion floating point values. A checkpoint creation is shown to require only a few seconds and the new checkpointing scheme scales almost perfectly up to more than 260,?000 (218) processes. To recover from a diskless checkpoint during runtime, we realize the recovery algorithms using ULFM MPI. The checkpointing mechanism is fully integrated in a state-of-the-art high-performance multi-physics simulation framework. We demonstrate the efficiency and robustness of the method with a realistic phase-field simulation originating in the material sciences and with a lattice Boltzmann method implementation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133