全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Model

DOI: 10.1177/0049124116672682

Keywords: respondent-driven sampling,network sampling,hidden populations,Markov,RDS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial assumption can produce biased estimates. We compare two different inference approaches: design-based inference, which relies on the known probability of selection in sampling, and model-based inference, which is based on models of human recruitment behavior and the social context within which sampling is conducted. The advantage of the latter approach is that when the violation of an assumption has been shown to produce biased population estimates, the model can be adjusted to more accurately reflect actual recruitment behavior, and thereby control for the source of bias. To illustrate this process, we focus on three sources of bias, differential effectiveness of recruitment, a form of nonresponse bias, and bias resulting from status differentials that produce asymmetries in recruitment behavior. We first present diagnostics for identifying types of bias and then present new forms of a model-based RDS estimator that controls for each type of bias. In this way, we show the unique advantages of a model-based estimator

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133