全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Active attitude fault

DOI: 10.1177/0142331218803410

Keywords: Flexible spacecraft,Chebyshev neural network,terminal sliding mode,actuator fault,finite-time control

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes a novel finite-time attitude tracking control approach for flexible spacecraft. This is achieved by integrating sliding-mode control and the active real-time fault-tolerant reconfiguration method. In this approach, the attitude error dynamics and the kinematics of the flexible spacecraft are first established. Then, a nonsingular terminal sliding-mode surface is designed, based on finite-time control theory. Applying the Chebyshev neural network, the uncertain dynamics induced by external disturbances and uncertain inertia parameters are approximated and estimated. The nominal control law and the compensation control law to obtain the active reconfiguration fault-tolerant controller are finally developed in normal and fault conditions, respectively. The closed-loop tracking system is proved to be uniformly ultimately bounded stable after a finite time. Numerical simulations are presented for a flexible spacecraft to illustrate the efficiency of the proposed controller

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133