Determining the geographic scale at which to apply ecosystem-based management (EBM) has proven to be an obstacle for many marine conservation programs. Generalizations based on geographic proximity, taxonomy, or life history characteristics provide little predictive power in determining overall patterns of connectivity, and therefore offer little in terms of delineating boundaries for marine spatial management areas. Here, we provide a case study of 27 taxonomically and ecologically diverse species (including reef fishes, marine mammals, gastropods, echinoderms, cnidarians, crustaceans, and an elasmobranch) that reveal four concordant barriers to dispersal within the Hawaiian Archipelago which are not detected in single-species exemplar studies. We contend that this multispecies approach to determine concordant patterns of connectivity is an objective and logical way in which to define the minimum number of management units and that EBM in the Hawaiian Archipelago requires at least five spatially managed regions. 1. Introduction Global catches of commercially fished species have declined by up to 90% under classic single-species fisheries models [1–3]. The high-profile failures of fisheries managed for maximum sustainable yield has led to widespread interest in a shift toward ecosystem-based management (EBM) of marine resources (reviewed by [4]). EBM can be broadly defined as an integrated approach that considers the entire ecosystem, including linkages and the cumulative impacts of all human activities within and as part of the system. As such, EBM is explicitly place-based and adaptive in nature, and therefore particularly attractive for management. In recognition of the need for explicit boundaries in ecosystem-based management, Spalding et al. [5] divided the oceans into 232 ecoregions. However, marine ecosystems are highly complex, with many linkages and feedbacks that occur across multiple scales of space and time in ways that have proven difficult to predict [4]. Existing approaches to EBM in marine systems include spatial control of human activities through the use of marine protected areas (MPAs) and/or ocean zoning, changes in governance, monitoring and evaluation via ecosystem indicators derived from multiple disciplines (e.g., oceanography, ecology, economics, political science, and sociology), risk assessment, and precautionary adaptive management [6]. Successful spatial management requires a complex system of zones, each of which seeks to match resource exploitation with biological productivity, local population levels, and socioeconomic
References
[1]
D. Pauly, V. Christensen, J. Dalsgaard, R. Froese, and F. Torres, “Fishing down marine food webs,” Science, vol. 279, no. 5352, pp. 860–863, 1998.
[2]
D. Pauly and R. Watson, “Counting the last fish,” Scientific American, vol. 289, no. 1, pp. 42–47, 2003.
[3]
B. Worm, E. B. Barbier, N. Beaumont et al., “Impacts of biodiversity loss on ocean ecosystem services,” Science, vol. 314, no. 5800, pp. 787–790, 2006.
[4]
K. L. McLeod and H. M. Leslie, “Why ecosystem-based management?” in Ecosystem-Based Management for the Oceans, K. L. McLeod and H. M. Leslie, Eds., Island Press, Washington, DC, USA, 2009.
[5]
M. D. Spalding, H. E. Fox, G. R. Allen et al., “Marine ecoregions of the world: a bioregionalization of coastal and shelf areas,” BioScience, vol. 57, no. 7, pp. 573–583, 2007.
[6]
C. V. Kappel, Threats to marine biodiversity and considerations for its conservation: from species to seascapes, Ph.D. dissertation, Stanford University, 2006.
[7]
J. N. Sanchirico and J. E. Wilen, “Optimal spatial management of renewable resources: matching policy scope to ecosystem scale,” Journal of Environmental Economics and Management, vol. 50, no. 1, pp. 23–46, 2005.
[8]
D. Hedgecock, P. H. Barber, and S. Edmands, “Genetic approaches to measuring connectivity,” Oceanography, vol. 20, pp. 70–79, 2007.
[9]
S. R. Thorrold, D. C. Zacherl, and L. A. Levin, “Population connectivity and larval dispersal: using geochemical signatures in calcified structures,” Oceanography, vol. 20, pp. 80–89, 2007.
[10]
M. J. Fogarty and L. Botsford, “Population connectivity and spatial management of marine fisheries,” Oceanography, vol. 20, pp. 112–123, 2007.
[11]
G. Thorson, “Reproductive and larval ecology of marine bottom invertebrates,” Biological Review, vol. 25, pp. 1–45, 1950.
[12]
R. R. Strathmann, “Hypotheses on the origins of marine larvae,” Annual Review of Ecology and Systematics, vol. 24, pp. 89–117, 1993.
[13]
B. P. Kinlan, S. D. Gaines, and S. E. Lester, “Propagule dispersal and the scales of marine community process,” Diversity and Distributions, vol. 11, no. 2, pp. 139–148, 2005.
[14]
H. A. Lessios and D. R. Robertson, “Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier,” Proceedings of the Royal Society B, vol. 273, no. 1598, pp. 2201–2208, 2006.
[15]
M. N. Dawson and W. M. Hamner, “A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems,” Journal of the Royal Society Interface, vol. 5, no. 19, pp. 135–150, 2008.
[16]
L. A. Levin, “Recent progress in understanding larval dispersal: new directions and digressions,” Integrative and Comparative Biology, vol. 46, no. 3, pp. 282–297, 2006.
[17]
R. K. Grosberg and C. W. Cunningham, “Genetic structure in the sea: from populations to communities,” in Marine Community Ecology, M. D. Bertness, S. D. Gaines, and M. E. Hay, Eds., pp. 61–84, Sinauer, Sunderland, Mass, USA, 2001.
[18]
K. A. Selkoe, B. S. Halpern, C. M. Ebert et al., “A map of cumulative impacts to a “pristine” coral reef ecosystem, the Papahānaumokuākea,” Coral Reefs, vol. 28, no. 3, pp. 635–650, 2009.
[19]
M. E. Hellberg, “Gene flow and isolation among populations of marine animals,” Annual Review of Ecology, Evolution, and Systematics, vol. 40, pp. 291–310, 2009.
[20]
I. R. Bradbury and P. Bentzen, “Non-linear genetic isolation by distance, life history, and dispersal estimation in aquatic organisms,” Marine Ecology Progress Series, vol. 340, pp. 245–257, 2007.
[21]
I. R. Bradbury, B. Laurel, P. V. R. Snelgrove, P. Bentzen, and S. E. Campana, “Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history,” Proceedings of the Royal Society B, vol. 275, no. 1644, pp. 1803–1810, 2008.
[22]
K. Weersing and R. J. Toonen, “Population genetics, larval dispersal, and connectivity in marine systems,” Marine Ecology Progress Series, vol. 393, pp. 1–12, 2009.
[23]
A. L. Shanks, “Pelagic larval duration and dispersal distance revisited,” Biological Bulletin, vol. 216, no. 3, pp. 373–385, 2009.
[24]
P. M. Ross, I. D. Hogg, C. A. Pilditch, and C. J. Lundquist, “Phylogeography of New Zealand's coastal benthos,” New Zealand Journal of Marine & Freshwater Research, vol. 43, pp. 1009–1027, 2009.
[25]
C. Riginos, K. E. Douglas, Y. Jin, D. F. Shanahan, and E. A. Treml, “Effects of geography and life history traits on genetic differentiation in benthic marine fishes,” Ecography. In press.
[26]
K. A. Selkoe, J. R. Watson, C. White et al., “Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species,” Molecular Ecology, vol. 19, no. 17, pp. 3708–3726, 2010.
[27]
L. A. Rocha, A. L. Bass, D. R. Robertson, and B. W. Bowen, “Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae),” Molecular Ecology, vol. 11, no. 2, pp. 243–252, 2002.
[28]
C. E. Bird, B. S. Holland, B. W. Bowen, and R. J. Toonen, “Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories,” Molecular Ecology, vol. 16, no. 15, pp. 3173–3186, 2007.
[29]
J. C. Avise, “Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology,” Oikos, vol. 63, pp. 62–76, 1992.
[30]
R. P. Kelly and S. R. Palumbi, “Genetic structure among 50 species of the northeastern Pacific rocky intertidal community,” PLoS One, vol. 5, no. 1, Article ID e8594, 2010.
[31]
K. E. Carpenter, P. H. Barber, E. Crandall, et al., “Comparative phylogeography of the coral triangle and implications for marine management,” Journal of Marine Biology, vol. 2011, Article ID 396982, 14 pages, 2011.
[32]
J. M. Pandolfi, R. H. Bradbury, E. Sala et al., “Global trajectories of the long-term decline of coral reef ecosystems,” Science, vol. 301, no. 5635, pp. 955–958, 2003.
[33]
E. E. DeMartini and A. M. Friedlander, “Spatial patterns of endemism in shallow-water reef fish populations of the Northwestern Hawaiian Islands,” Marine Ecology Progress Series, vol. 271, pp. 281–296, 2004.
[34]
A. M. Friedlander and E. E. DeMartini, “Contrasts in density, size, and biomass of reef fishes between the Northwestern and the Main Hawaiian islands: the effects of fishing down apex predators,” Marine Ecology Progress Series, vol. 230, pp. 253–264, 2002.
[35]
I. D. Williams, W. J. Walsh, R. E. Schroeder, A. M. Friedlander, B. L. Richards, and K. A. Stamoulis, “Assessing the importance of fishing impacts on Hawaiian coral reef fish assemblages along regional-scale human population gradients,” Environmental Conservation, vol. 35, no. 3, pp. 261–272, 2008.
[36]
A. M. Friedlander, G. S. Aeby, R. B. Brainard, et al., “The state of coral reef ecosystems of the Northwestern Hawaiian Islands,” in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States, J. E. Waddell, Ed., NOAA/NCCOS Center for Coastal Monitoring and Assessment's Biogeography Team, pp. 270–311, NOAA Technical Memorandum NOS NCCOS 11, 2005.
[37]
K. S. Rodgers, P. L. Jokiel, C. E. Bird, and E. K. Brown, “Quantifying the condition of Hawaiian coral reefs,” Aquatic Conservation: Marine and Freshwater Ecosystems, vol. 20, no. 1, pp. 93–105, 2010.
[38]
D. Fautin, P. Dalton, L. S. Incze et al., “An overview of marine biodiversity in United States waters,” PLoS One, vol. 5, no. 8, Article ID e11914, 2010.
[39]
I. A. Abbott, Marine Red Algae of the Hawaiian Islands, Bishop Museum Press, Honolulu, Hawaii, USA, 1999.
[40]
A. C. Ziegler, Hawaiian Natural History, Ecology & Evolution, University of Hawaii Press, Honolulu, Hawaii, USA, 2002.
[41]
L. G. Eldredge and N. L. Evenhuis, “Hawaii’s biodiversity: a detailed assessment of the numbers of species in the Hawaiian Islands,” Bishop Museum Occasional Papers 76, p. 28, 2003, http://hbs.bishopmuseum.org/pdf/op76.pdf.
[42]
J. E. Randall, Reef and Shore Fishes of the Hawaiian Islands, University of Hawaii Sea Grant Program, Honolulu, Hawaii, USA, 2007.
[43]
K. A. Selkoe, C. M. Henzler, and S. D. Gaines, “Seascape genetics and the spatial ecology of marine populations,” Fish and Fisheries, vol. 9, no. 4, pp. 363–377, 2008.
[44]
M. Ramon, P. Nelson, E. DeMartini, W. Walsh, and G. Bernardi, “Phylogeography, historical demography, and the role of post-settlement ecology in two Hawaiian damselfish species,” Marine Biology, vol. 153, no. 6, pp. 1207–1217, 2008.
[45]
M. Iacchei and R. J. Toonen, “Caverns, compressed air, and crustacean connectivity: insights into Hawaiian spiny lobster populations,” in Diving for Science 2010. Proceedings of the 29th American Academy of Underwater Sciences Symposium, N. W. Pollock, Ed., American Academy of Underwater Sciences, Dauphin Island, Ala, USA, 2010.
[46]
D. J. Skillings and R. J. Toonen, “It’s just a flesh wound: non-lethal sampling for conservation genetics studies,” in Diving for Science. Proceedings of the 29th American Academy of Underwater Sciences Symposium, N. W. Pollock, Ed., Proceedings of the American Academy of Underwater Sciences, AAUS, Dauphin Island, Ala, USA, 2010.
[47]
G. Seutin, B. N. White, and P. T. Boag, “Preservation of avian blood and tissue samples for DNA analyses,” Canadian Journal of Zoology, vol. 69, pp. 82–90, 1991.
[48]
G. T. Concepcion, M. Medina, and R. J. Toonen, “Noncoding mitochondrial loci for corals,” Molecular Ecology Notes, vol. 6, no. 4, pp. 1208–1211, 2006.
[49]
P. Sunnucks and D. F. Hales, “Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae),” Molecular Biology and Evolution, vol. 13, no. 3, pp. 510–524, 1996.
[50]
M. A. J. Rivera, C. D. Kelley, and G. K. Roderick, “Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses,” Biological Journal of the Linnean Society, vol. 81, no. 3, pp. 449–468, 2004.
[51]
M. Rivera, K. R. Andrews, D. R. Kobayashi, et al., “Genetic analyses and simulations of larval dispersal reveal distinct populations and directional connectivity across the range of the Hawaiian Grouper (Epinephelus quernus),” Journal of Marine Biology, vol. 11, Article ID 765353, 11 pages, 2011.
[52]
J. A. Eble, R. J. Toonen, and B. W. Bowen, “Endemism and dispersal: comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago,” Marine Biology, vol. 156, no. 4, pp. 689–698, 2009.
[53]
J. A. Eble, L. S. Sorenson, Y. P. Papastamatiou, L. Basch, R. J. Toonen, and B. W. Bowen, “Escaping paradise: Larval export from Hawaii in an Indo-Pacific reef fish, the Yellow Tang,” Marine Ecology Progress Series. In press.
[54]
M. R. Gaither, B. W. Bowen, R. J. Toonen et al., “Genetic consequences of introducing allopatric lineages of Bluestriped Snapper (Lutjanus kasmira) to Hawaii,” Molecular Ecology, vol. 19, no. 6, pp. 1107–1121, 2010.
[55]
T. S. Daly-Engel, R. D. Grubbs, K. A. Feldheim, B. W. Bowen, and R. J. Toonen, “Is multiple mating beneficial or unavoidable? Low multiple paternity and genetic diversity in the shortspine spurdog Squalus mitsukurii,” Marine Ecology Progress Series, vol. 403, pp. 255–267, 2010.
[56]
D. J. Skillings, C. E. Bird, and R. J. Toonen, “Gateways to Hawai‘i: genetic population structure of the tropical sea cucumber Holothuria atra,” Journal of Marine Biology, vol. 2011, Article ID 783030, 16 pages, 2011.
[57]
M. A. Timmers, K. R. Andrews, C. E. Bird, M. J. de Maintenon, R. E. Brainard, and R. J. Toonen, “Widespread dispersal of the crown-of-thorns sea star, Acanthaster planci, across the Hawaiian Archipelago and Johnston Atoll,” Journal of Marine Biology, vol. 2011, Article ID 934269, 10 pages, 2011.
[58]
N. R. Polato, G. T. Concepcion, R. J. Toonen, and I. B. Baums, “Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata,” Molecular Ecology, vol. 19, no. 21, pp. 4661–4677, 2010.
[59]
J. K. Schultz, J. D. Baker, R. J. Toonen, and B. W. Bowen, “Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi),” Journal of Heredity, vol. 100, no. 1, pp. 25–33, 2009.
[60]
J. K. Schultz, J. D. Baker, R. J. Toonen, A. L. Harting, and B. W. Bowen, “Range-wide genetic connectivity of the Hawaiian Monk Seal and implications for translocation,” Conservation Biology, 2010. In press.
[61]
K. R. Andrews, L. Karczmarski, W. W. L. Au et al., “Rolling stones and stable homes: social structure, habitat diversity and population genetics of the Hawaiian spinner dolphin (Stenella longirostris),” Molecular Ecology, vol. 19, no. 4, pp. 732–748, 2010.
[62]
D. Posada and K. A. Crandall, “Modeltest: testing the model of DNA substitution,” Bioinformatics, vol. 14, no. 9, pp. 817–818, 1998.
[63]
L. Excoffier, L. G. Laval, and S. Schneider, “ARLEQUIN ver.3.0: an integrated software package for population genetics data analysis,” Evolutionary Bioinformatics, vol. 1, pp. 47–50, 2005.
[64]
P. W. Hedrick, “A standardized genetic differentiation measure,” Evolution, vol. 59, no. 8, pp. 1633–1638, 2005.
[65]
P. G. Meirmans, “Using the AMOVA framework to estimate a standardized genetic differentiation measure,” Evolution, vol. 60, no. 11, pp. 2399–2402, 2006.
[66]
L. Jost, “GST and its relatives do not measure differentiation,” Molecular Ecology, vol. 17, no. 18, pp. 4015–4026, 2008.
[67]
C. E. Bird, S. A. Karl, and R. J. Toonen, “Detecting and measuring genetic differentiation,” in Crustacean Issues: Phylogeography and Population Genetics in Crustacea, S. Koenemann, C. Held, and C. Schubart, Eds., in review.
[68]
Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing under dependency,” Annals of Statistics, vol. 29, no. 4, pp. 1165–1188, 2001.
[69]
C. White, K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacherl, and R. J. Toonen, “Ocean currents help explain population genetic structure,” Proceedings of the Royal Society B, vol. 277, no. 1688, pp. 1685–1694, 2010.
[70]
E. A. Treml, P. N. Halpin, D. L. Urban, and L. F. Pratson, “Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation,” Landscape Ecology, vol. 23, no. 1, pp. 19–36, 2008.
[71]
A. M. Friedlander, D. Kobayashi, B. W. Bowen, et al., “Chapter 9: connectivity and integrated ecosystem studies,” in Papahānaumokuākea Monument Biogeographic Assessment Report, pp. 291–330, NOAA Technical Memorandum, 2009.
[72]
D. R. Kobayashi, “Colonization of the Hawaiian Archipelago via Johnston Atoll: a characterization of oceanographic transport corridors for pelagic larvae using computer simulation,” Coral Reefs, vol. 25, no. 3, pp. 407–417, 2006.
[73]
D. R. Kobayashi and J. J. Polovina, “Simulated seasonal and interannual variability in larval transport and oceanography in the Northwestern Hawaiian Islands using satellite remotely sensed data and computer modeling,” Atoll Research Bulletin, no. 543, pp. 365–390, 2006.
[74]
C. B. Woodson and M. A. McManus, “Foraging behavior can influence dispersal of marine organisms,” Limnology and Oceanography, vol. 52, no. 6, pp. 2701–2709, 2007.
[75]
C. B. Paris, L. M. Chérubin, and R. K. Cowen, “Surfing, spinning, or diving from reef to reef: effects on population connectivity,” Marine Ecology Progress Series, vol. 347, pp. 285–300, 2007.
[76]
P. B. Marko, “‘What's larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential,” Molecular Ecology, vol. 13, no. 3, pp. 597–611, 2004.
[77]
E. D. Crandall, M. A. Frey, R. K. Grosberg, and P. H. Barber, “Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods,” Molecular Ecology, vol. 17, no. 2, pp. 611–626, 2008.
[78]
L. A. Rocha, M. T. Craig, and B. W. Bowen, “Phylogeography and the conservation of coral reef fishes,” Coral Reefs, vol. 26, no. 3, pp. 501–512, 2007.
[79]
C. P. Meyer, J. B. Geller, and G. Paulay, “Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods,” Evolution, vol. 59, no. 1, pp. 113–125, 2005.
[80]
G. Paulay and C. Meyer, “Dispersal and divergence across the greatest ocean region: do larvae matter?” Integrative and Comparative Biology, vol. 46, no. 3, pp. 269–281, 2006.
[81]
M. T. Craig, J. A. Eble, B. W. Bowen, and D. R. Robertson, “High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae),” Marine Ecology Progress Series, vol. 334, pp. 245–254, 2007.
[82]
J. K. Schultz, R. L. Pyle, E. DeMartini, and B. W. Bowen, “Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus,” Marine Biology, vol. 151, no. 1, pp. 167–175, 2007.
[83]
M. T. Craig, J. A. Eble, and B. W. Bowen, “Origins, ages and population histories: comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon),” Journal of Biogeography, vol. 37, no. 11, pp. 2125–2136, 2010.
[84]
J. A. Eble, L. A. Rocha, M. T. Craig, and B. W. Bowen, “Not all larvae stay close to home: insights into marine population connectivity with a focus on the Brown Surgeonfish,” Journal of Marine Biology, vol. 2010, Article ID 518516, 12 pages, 2010.
[85]
M. R. Christie, B. N. Tissot, M. A. Albins, et al., “Larval connectivity in an effective network of marine protected areas,” PLoS One, vol. 5, no. 12, p. e15715, 2010.
[86]
D. S. Slocombe, “Implementing ecosystem-based management,” BioScience, vol. 43, no. 9, pp. 612–622, 1993.
[87]
J. Lubchenco, S. R. Palumbi, S. D. Gaines, and S. Andelman, “Plugging a hole in the ocean: the emerging science of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S3–S7, 2003.
[88]
B. R. Noon, K. S. McKelvey, and B. G. Dickson, “Multispecies conservation planning on U.S. federal lands,” in Models for Planning Wildlife Conservation in Large Landscapes, J. J. Millspaugh and F. R. Thompson III, Eds., pp. 51–83, Elsevier, New York, NY, USA, 2009.
[89]
S. Manel, M. K. Schwartz, G. Luikart, and P. Taberlet, “Landscape genetics: combining landscape ecology and population genetics,” Trends in Ecology and Evolution, vol. 18, no. 4, pp. 189–197, 2003.
[90]
A. Storfer, M. A. Murphy, J. S. Evans et al., “Putting the 'landscape' in landscape genetics,” Heredity, vol. 98, no. 3, pp. 128–142, 2007.
[91]
M. C. Whitlock and D. E. Mccauley, “Indirect measures of gene flow and migration: doesn’t equal ,” Heredity, vol. 82, no. 2, pp. 117–125, 1999.
[92]
J. E. Neigel, “A comparison of alternative strategies for estimating gene flow from genetic markers,” Annual Review of Ecology and Systematics, vol. 28, pp. 105–128, 1997.
[93]
J. E. Neigel, “Is obsolete?” Conservation Genetics, vol. 3, no. 2, pp. 167–173, 2002.
[94]
G. Gerlach, A. Jueterbock, P. Kraemer, J. Deppermann, and P. Harmand, “Calculations of population differentiation based on and D: forget but not all of statistics,” Molecular Ecology, vol. 19, no. 18, pp. 3845–3852, 2010.
[95]
L. G. Eldredge and C. M. Smith, Eds., “A guidebook of introduced marine species in Hawai‘i,” Bishop Museum Technical Report 21, p. 65, 2001.
[96]
G. T. Concepcion, S. E. Kahng, M. W. Crepeau, E. C. Franklin, S. L. Coles, and R. J. Toonen, “Resolving natural ranges and marine invasions in a globally distributed octocoral (genus Carijoa),” Marine Ecology Progress Series, vol. 401, pp. 113–127, 2010.
[97]
M. R. Gaither, R. J. Toonen, D. R. Robertson, S. Planes, and B. W. Bowen, “Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus),” Journal of Biogeography, vol. 37, no. 1, pp. 133–147, 2010.