Based on the macroscopic and microscopic observation of coal structure, the vitrinite reflectance analysis, and the mercury injection testing of coal samples collected from Huaibei coalfield and Qinshui basin, the characterization of coal reservoir and its restriction on the development of coalbed methane are studied. The results indicate that coal reservoir in study area can be classified as five types according to the coal metamorphism and deformation degrees, and they are respectively high grade metamorphic and medium deformational to strongly deformation coal (I), high grade metamorphic and comparatively weakly deformational coal (II), medium grade metamorphic and comparatively strongly deformational coal (III), medium grade metamorphic and comparatively weakly deformational coal (IV), and low grade metamorphic and strongly deformational coal (V). Furthermore, the type II and type IV coal reservoirs are favorable for the development of the coalbed methane because of the well absorptive capability and good permeability. Thus, southern part of Qinshui basin and south-central of Huaibei coal field are potential areas for coalbed methane exploration and development. 1. Introduction Coal is not only a kind of mineral fuel but also the reservoir of coalbed methane (CBM). CBM as an unconventional natural gas has gained much attention from researchers around the world. The exploration and development of CBM in America has commercialized over 20 years, and CBM production has industrialized in Australia and Canada in recent years. Based on the successful exploration and development of CBM in USA, the relevant progresses on CBM exploration and development have been summarized during recent years [1–4]. However, because of distinct difference in geological background and coal reservoir characterization, CBM exploration and development in China had not developed successfully as America. Coal is a kind of porous medium, and its pore structure not only affects gas content but also restricts permeability and recovery of coalbed methane. Currently, scholars have studied pore structure of coals and metamorphic deformational environment by using vitrinite reflectance testing, electronic scanning observation, mercury intrusion testing, low-temperature nitrogen adsorption experiment, nuclear magnetic resonance testing, and CT technology, and they have obtained better understanding on pore structure of coal reservoir, coalbed methane accumulation and recovery [2, 5, 6]. However, few scholars combined metamorphism with deformation of coal to discuss pore structure and its
References
[1]
Y. W. Ju, B. Jiang, G. L. Wang, et al., Tectonic Coals: Structures and Physical Properties of Reservoirs, China University of Mining and Technology, Xuzhou, China, 2005.
[2]
H. Zhang, X. Y. Li, Q. Hao, et al., Study on Scan Electron Microscope of China Coal, Geological Publishing House, Beijing, China, 2003.
[3]
Y. Ju, B. Jiang, Q. Hou, and G. Wang, “Relationship between nano-scale deformation of coal structure and metamorphic-deformed environments,” Chinese Science Bulletin, vol. 50, no. 16, pp. 1784–1795, 2005.
[4]
W. Sun, C. Shi, J. Zhao, and L. Zhao, “Application of X-CT scanned image technique in the research of micro-pore texture and percolation mechanism in ultra-permeable oil field—taking an example from chang 82 formation in the Xifeng oil field,” Acta Geologica Sinica, vol. 80, no. 5, pp. 775–779, 2006.
[5]
Y. Ju, B. Jiang, Q. Hou, Y. Tan, G. Wang, and W. Xiao, “Behavior and mechanism of the adsorption/desorption of tectonically deformed coals,” Chinese Science Bulletin, vol. 54, no. 1, pp. 88–94, 2009.
[6]
J. C. Quick and D. E. Tabet, “Suppressed vitrinite reflectance in the Ferron coalbed gas fairway, central Utah: possible influence of overpressure,” International Journal of Coal Geology, vol. 56, no. 1-2, pp. 49–67, 2003.
[7]
S. F. Han, Geological Condition and Prediction of Coal Accumulation in Huainan and Huaibei Coalfields, Geological Publishing House, Beijing, China, 1990.
[8]
G. L. Wang, D. Y. Cao, and B. Jiang, The Thrust and NappeTectonics and Gravitational Sliding Structure in Southern North China, China University of Mining and Technology, Xuzhou, China, 1992.
[9]
Y. Ju, B. Jiang, Q. Hou, G. Wang, and A. Fang, “Structural evolution of nano-scale pores of tectonic coals in southern North China and its mechanism,” Acta Geologica Sinica, vol. 79, no. 2, pp. 269–285, 2005.
[10]
G. L. Wang, Y. W. Ju, M. L. Zheng, et al., Tectonics of Energy Resource Basins in the Northern China, China University of Mining and Technology, Xuzhou, China, 2007.
[11]
Y. W. Ju, J.J. Fan, J. Q. Tan, et al., “Basin-mountain evolution, lithosphere transformation and their relationship with coalbed methane accumulation in North China,” Coal Geology of China, vol. 21, no. 3, pp. 1–5, 2009 (Chinese).
[12]
Y. W. Ju, B. Jiang, Q. L. Hou, and G. L. Wang, “New structure-genetic classification system in tectonically deformed coals and its geological significance,” Journal of the China Coal Society, vol. 29, no. 5, pp. 513–517, 2004.
[13]
R. M. Bustin and C. R. Clarkson, “Geological controls on coalbed methane reservoir capacity and gas content,” International Journal of Coal Geology, vol. 38, no. 1-2, pp. 3–26, 1998.
[14]
P. H. Zhang, “Key parameters of coal reservior related to coalbed methane recovery of China,” Natural Gas Geoscience, vol. 18, no. 6, pp. 880–884, 2007 (Chinese).
[15]
C. S. Zhu, “The relationship between coal porosity and coal rank,” Coal Geology & Exploration, no. 5, pp. 29–33, 1986 (Chinese).
[16]
H. Li and Y. Ogawa, “Pore structure of sheared coals and related coalbed methane,” Environmental Geology, vol. 40, no. 11-12, pp. 1455–1461, 2001.
[17]
J. Q. Shi, S. Durucan, and I. C. Sinka, “Key parameters controlling coalbed methane cavity well performance,” International Journal of Coal Geology, vol. 49, no. 1, pp. 19–31, 2002.
[18]
C. Laxminarayana and P. J. Crosdale, “Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals,” International Journal of Coal Geology, vol. 40, no. 4, pp. 309–325, 1999.
[19]
C. R. Clarkson and R. M. Bustin, “Effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions,” Fuel, vol. 78, no. 11, pp. 1333–1344, 1999.
[20]
L. R. Radovic, V. C. Menon, C. A. Leon et al., “On the porous structure of coals: evidence for an interconnected but constricted micropore system and implications for coalbed methane recovery,” Adsorption, vol. 3, no. 3, pp. 221–232, 1997.
[21]
B. B. Hodot, Coal and Gas Outbursts, China Publishing House of Industry, Beijing, China, 1966, Translated by S. Z. Song, Y. A. Wang.
[22]
X. Su, L. Zhang, and X. Lin, “Influence of coal rank on coal adsorption capacity,” Natural Gas Industry, vol. 25, no. 1, pp. 19–21, 2005 (Chinese).
[23]
Q. L. Zhang, Q. Zhang, H. Zhang, et al., “Adsorption characteristics of different rank coals in different area, China,” Coal Geology & Exploration, vol. 2, no. z1, pp. 68–72, 2004 (Chinese).
[24]
Y. B. Yao and D. M. Liu, “Developing features of fissure system in Henan coal reserves seams and research on mining of coal bed methane,” Coal Science and Technology, vol. 4, no. 3, pp. 64–68, 2006.