全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Automated Closed

DOI: 10.1177/2472630318760745

Keywords: pluripotent stem cell,suspension aggregate,serial passage,automated bioreactor,cGMP,closed system,clinical automation,cell processing,wave bioreactor,Xuri,Cellbag

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pluripotent stem cell suspension aggregates have proven to be an efficient and phenotypically stable means for expansion and directed differentiation. Bioreactor systems with automation of perfusion, fluidization, and gas exchange are essential for scaling up pluripotent stem cell cultures. Since stem cell pluripotency and differentiation are affected by both chemical and physical signals, we investigated a low-shear method for the expansion of cells in a rocking-motion bioreactor. The rocking motion drives continual mixing and aeration, and the single-use disposable bioreactors avoid issues around contamination during seeding, medium exchange, passage, and cell harvest. Serial passaging from a 150 mL to a 1 L scale was demonstrated, achieving cell densities of up to 4 million cells/mL. In an average of 13 experiments, pluripotent stem cell aggregates expanded 5.7-fold (with maximal 9.5-fold expansion) and maintained 97% viability over 4 days in a rocking bioreactor culture. In seven experiments with improved culture conditions, the average expansion was 6.8-fold. Maintenance of pluripotency was confirmed by differentiation to all three germ layers and surface marker expression, and the expanded aggregates maintained a stable normal karyotype. The automation associated with the rocking platform bioreactor required no user intervention during the 4-day culture, providing hands-off expansion of pluripotent stem cells

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133