全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Investigating Capnography Innovation for Better Patient Monitoring in the Resource Limited Surgical Setting

DOI: 10.1177/1553350618813252

Keywords: biomedical engineering,simulation,surgical education

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Access to basic anesthetic monitoring in the developing world is lacking, which contributes to the 100 times greater anesthesia-related mortality in low- and middle-income countries. We hypothesize that an environmental sensor with a lower sampling rate could provide some clinical utility by providing CO2 levels, respiratory rate, and support in detection of clinical abnormalities. Materials and Methods. A bench-top lung simulation was created to replicate CO2 waveforms, and an environmental sensor was compared with industry-available technology. Sensor response time and respiratory rates were compared between devices. Additionally, an in silico model was created to replicate capnography pathology as waveforms would appear using the environmental sensor. Results and Conclusion. Breath simulations using the bench-top lung simulation produced similar results to industry standards with a degree of variability. Respiratory rates did not differ between the environmental sensor and all other devices tested. Finally, pathological waveforms created in silico carried a certain level of detail regarding ventilatory pathology, which could provide some clinical insight to an anesthesiologist. We believe our prototype is the first step toward making low-cost and portable capnography available in the resource-limited setting, and future efforts should focus on bridging the gap to safer anesthesia and surgery globally

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133