全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Sharpening randomization

DOI: 10.1177/0962280217745720

Keywords: Factorial effect,finite-population analysis,inclusion–exclusion principle,partial identification,potential outcome

Full-Text   Cite this paper   Add to My Lib

Abstract:

In medical research, a scenario often entertained is randomized controlled 22 factorial design with a binary outcome. By utilizing the concept of potential outcomes, Dasgupta et al. proposed a randomization-based causal inference framework, allowing flexible and simultaneous estimations and inferences of the factorial effects. However, a fundamental challenge that Dasgupta et al.’s proposed methodology faces is that the sampling variance of the randomization-based factorial effect estimator is unidentifiable, rendering the corresponding classic “Neymanian” variance estimator suffering from over-estimation. To address this issue, for randomized controlled 22 factorial designs with binary outcomes, we derive the sharp lower bound of the sampling variance of the factorial effect estimator, which leads to a new variance estimator that sharpens the finite-population Neymanian causal inference. We demonstrate the advantages of the new variance estimator through a series of simulation studies, and apply our newly proposed methodology to two real-life datasets from randomized clinical trials, where we gain new insights

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133