全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Joint Influence of SNPs and DNA Methylation on Lipids in African Americans From Hypertensive Sibships

DOI: 10.1177/1099800417752246

Keywords: African Americans,cholesterol,DNA methylation,genetic research,GENOA,lipids

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plasma concentrations of lipids (i.e., total cholesterol, high-density cholesterol, low-density cholesterol, and triglycerides) are amenable to therapeutic intervention and remain important factors for assessing risk of cardiovascular diseases. Some of the observed variability in serum lipid concentrations has been associated with genetic and epigenetic variants among cohorts with European ancestry (EA). Serum lipid levels have also been associated with genetic variants in multiethnic populations. The purpose of this study was to determine whether single-nucleotide polymorphisms (SNPs) and DNA methylation (DNAm) differences contribute to lipid variation among African Americans ([AAs], N = 739) in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Previous meta-analyses identified 161 SNPs that are associated with lipid traits in populations of EA. We evaluated these SNPs and 66 DNAm sites within the genes containing the SNPs in the GENOA cohort using linear mixed-effects modeling. We did not identify any significant associations of SNPs or DNAm with serum lipid levels. These results suggest that the SNPs identified as being significant for lipid levels through the EA genome-wide association studies may not be significant across AA populations. Reductions in morbidity and mortality due to variation in lipids among AAs may be achieved through a better understanding of the genetic and epigenetic factors associated with serum lipid levels for early and appropriate screening. Further large-scale studies specifically within AA and other non-EA populations are warranted

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133