全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2673 

Time Series Association State Analysis Method for Attacks on the Smart Internet of Electric Vehicle Charging Network

DOI: 10.1177/0361198119837180

Full-Text   Cite this paper   Add to My Lib

Abstract:

A robust, integrated and flexible charging network is essential for the growth and deployment of electric vehicles (EVs). The State Grid of China has developed a Smart Internet of Electric Vehicle Charging Network (SIEN). At present, there are three main ways to attack SIEN maliciously: distributed data tampering; distributed denial of service (DDoS); and forged command attacks. Network attacks are random and continuous, closely related to time. By contrast, when analyzing the alarm in malicious attacks, the traditional Markov chain based model ignores the association relationship in the time series between states of alarm, so that the analysis and prediction of alarms are not suitable for real situations. This paper analyzes the characteristics of the three types of attack and proposes an association state analysis method on the time series. This method firstly analyzes alarm logs at different locations, different levels, and different types, and then establishes the temporal association of scattered and isolated alarm information. Secondly, it tracks the transition trend of abnormal events in the SIEN’s main station layer, the channel layer, and the sub-station layer. It also identifies the real attack behavior. This method not only provides a prediction of security risks, but, more importantly, it can also accurately analyze the trend of SIEN security risks. Compared with the ordinary Markov chain model, this method can better smooth the fluctuation of processing values, with higher real-time performance, stronger robustness, and higher precision. This method has been applied to the State Grid of China

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133