全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Numerical investigation of front

DOI: 10.1177/0957650918783122

Keywords: Oscillating water column,VOF,wave energy,converter,efficiency,inclination

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the main geometrical parameters of the fixed oscillating water column wave energy converters is the inclination angle of front wall. In this study, the effects of this parameter on the hydrodynamic performance of an oscillating water column is investigated using a fully nonlinear two-dimensional numerical wave tank, which is developed using the Ansys Fluent 15.0 commercial software. The accuracy of the developed wave tank is first examined by simulating an oscillating water column, having a front wall normal to the water-free surface, subjected to linear, small amplitude incident waves. The resultant absorption efficiencies are compared with available analytical data in the literature, where a good agreement was observed. Next, the simulations are performed for strongly nonlinear waves, up to the wave steepness of 0.069 (H/L?=?0.069), where H is the wave height and L is the wave length. Results show that the absorption efficiency of the oscillating water column decreases considerably as the wave height increases. Moreover, the maximum wave energy absorption efficiency for the highly nonlinear waves occurs at a pneumatic damping coefficient lower than that of the linear theory. Then, the absorption efficiency of the oscillating water column is determined for eight various front wall configurations at various incident wave periods. Results show that, the front walls that are slightly bent towards the inner region of the oscillating water column chamber are more efficient at some wave periods in comparison with the cases studied in this paper

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133