全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

In

DOI: 10.1177/1464419317744681

Keywords: Tire dynamics,heavy-loaded radial tire,flexible beam on elastic continuous beam tire model,rigid-elastic coupled tire model with continuous sidewall,sidewall bending stiffness

Full-Text   Cite this paper   Add to My Lib

Abstract:

The in-plane vibration characteristic of time and frequency domain for heavy-loaded radial tire with a larger flat ratio (close to 1) is researched by utilizing the rigid-elastic coupled tire model with continuous sidewall. The sidewall bending stiffness is considered and the flexible beam on the elastic continuous beam tire model is proposed and investigated analytically to simulate the in-plane vibration of the heavy-loaded radial tire within more wider frequency band. The rigid-elastic coupled tire model is derived with finite difference method and the analytical stiffness matrix; mass matrix is formed based on the geometrical and structural parameters of heavy-loaded radial tire. Structural parameters are identified utilizing genetic algorithm based on the error between the analytical and experimental modal frequency. In-plane frequency domain transfer function and time domain dynamics response of heavy-loaded radial tire is investigated and compared with the experimental result. Experimental and theoretical results show that in-plane rigid-elastic coupled tire model with sidewall bending stiffness can be used to precisely predict the transfer function and vibration feature within the frequency band of 300 Hz, compared with the tire model with the distributed independent sidewall element. The flexible beam on the elastic continuous beam tire model and rigid-elastic coupled tire model with continuous sidewall can be extended to the dynamic analysis of the tire with larger flat ratio or the tire under the impulsive loading conditions

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133