全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Intelligent attitude planning algorithm based on the characteristics of low radar cross section characteristics of microsatellites under complex constraints

DOI: 10.1177/0954410017724821

Keywords: Attitude planning,complex constraint conditions,low radar cross section characteristics,pigeon-inspired optimization algorithm,modified Rodrigues parameter

Full-Text   Cite this paper   Add to My Lib

Abstract:

The attitude optimization problem of spacecraft under restricted conditions is an important issue of spacecraft planning control. This paper aims at on-orbit microsatellites, which is based on the directional characteristics of their own low radar cross section designs, maintaining low detection probabilities for ground, sea, and space-based detection systems, and simultaneously satisfying the constraint conditions of complex attitude constraints. In this paper, an improved pigeon-inspired optimization algorithm and a nonredundant attitude description method—modified Rodrigues parameters—are used to solve the problem of attitude optimal planning for satellites under complex constraints. This paper focuses on the core evolution mathematical model of the pigeon-inspired optimization algorithm based on the modified Rodrigues parameter, the iterative evolution process of the individual in the pigeon population, and the fitness function model of the individual at different positions. The comparison between the classical pigeon-inspired optimization algorithm and the improved pigeon-inspired optimization algorithm is made in the planned result and resource occupancy, respectively. The simulation results show that the improved algorithm has a faster convergence speed and a smoother optimization result than the classic pigeon-inspired optimization algorithm, where it greatly reduces the computational load and reduces the load of the control system, thus achieving an optimal algorithm

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133