全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Internal leakage identification of hydraulic cylinder based on intrinsic mode functions with random forest

DOI: 10.1177/0954406219846148

Keywords: Internal leakage,empirical mode decomposition,random forest,condition monitoring,feature extraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Monitoring for internal leakage of hydraulic cylinders is vital to maintain the efficiency and safety of hydraulic systems. An intelligent classifier is proposed to automatically evaluate internal leakage levels based on the newly extracted features and random forest algorithm. The inlet and outlet pressures as well as the pressure differences of two chambers are chosen as the monitoring parameters for leakage identification. The empirical mode decomposition method is used to decompose the raw pressure signals into a series of intrinsic mode functions to obtain the essence in experimental signals. Then, the features extracted from intrinsic mode functions in terms of statistical analysis are formed the input vector to train the leakage detector. The classifier based on random forest is established to categorize internal leakage into proper levels. The accuracy of the internal leakage evaluator is verified by the experimental pressure signals. Moreover, an internal leakage evaluator is established based on the support vector machine algorithm, in which the wavelet transform is applied for feature extraction. The accuracy and efficiency of different classifiers are compared based on leakage experiments. The results show that the classifier trained by the intrinsic mode function features in terms of random forest algorithm may more effectively and accurately identify internal leakage levels of hydraulic cylinders. The leakage evaluator provides probability for online monitoring of the internal leakage of hydraulic cylinders based on the inherent sensors

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133