全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Fault diagnosis based on TOPSIS method with Manhattan distance

DOI: 10.1177/1687814019833279

Keywords: Fault diagnosis,Manhattan distance,intuitionistic fuzzy set,intuitionistic fuzzy weighted averaging,technique for order performance by similarity to ideal solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fault diagnosis is important for the maintenance of machinery equipment. Due to the randomness and fuzziness of fault, the relationship between fault types and their characteristics are complicated. Therefore, the determination of fault type is a challenging part of machinery fault diagnosis with the traditional method. To tackle this problem, a fault diagnosis approach based on the technique for order performance by similarity to ideal solution with Manhattan distance is presented in this article. First, the similarity measure between the fault model and the detection sample is constructed based on the Manhattan distance. Then, the similarity is transformed into intuitionistic fuzzy set and the generated intuitionistic fuzzy set is fused by the intuitionistic fuzzy weighted averaging operator. On this basis, the technique for order performance by similarity to the ideal solution approach is utilized to obtain the final rank to ascertain the fault type. The proposed method can handle an intricate relationship between multiple fault types and their various fault characteristics and better express uncertain information. Finally, a fault diagnosis example of the machine rotor and comparative study are conducted to illustrate the application and the effectiveness of the proposed method

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133