全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Widespread Oceanospirillaceae Bacteria in Porites spp.

DOI: 10.1155/2012/746720

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present evidence that a clade of bacteria in the Oceanospirillaceae is widely distributed in Porites spp. and other hermatypic corals. Bacteria 16S rDNA clone libraries were prepared from community genomic DNA extracted from Porites compressa and Porites lobata surface mucus and adjacent seawater collected along a line transect off Maui. Phylogenetic affiliations of operational taxonomic units (OTUs) defined at the 97% level of nucleotide identity varied within and between the respective Porites spp. along the transect and differed from those in the seawater. One OTU (C7-A01), however, occurred in all mucus samples from both Porites species. C7-A01c affiliates with a clade of uncultivated Oceanospirillum-like bacteria; the nearest neighbors of this OTU have been reported only in the surface mucus layer of Porites spp. and other stony corals, in reef-dwelling invertebrates, and the corallivorous six-banded angelfish, Pomacanthus sexstriatus. 1. Introduction The best known interaction between hermatypic corals and other organisms is that between Symbiodinium zooxanthellae and the coral host [1–3]. However, specific interactions may also exist between prokaryotes and hermatypic corals [4–10]. It is important to determine if such associations do exist, given how sensitive some corals are to environmental stressors and that microbes may be involved in a response [11]. In this context, the phylogenetic structure of the microbial flora in a healthy coral should be defined before predicting its role or function in diseased or otherwise stressed corals. Through 16S rDNA clone libraries, we investigated the phylogeny of microbial communities in mucus from apparently healthy Porites compressa and P. lobata corals along a line transect over a reef off the coast of Maui, Hawai‘i. Through this sampling design, we aimed to determine if there is evidence that particular Bacteria species occur consistently in either or both Porites species and contemporaneously collected adjacent seawater and if any in turn affiliate phylogenetically with those reported in corals or other organisms elsewhere. Evidence for such associations should set the scene for cultivation attempts directed at these Bacteria, and, as with other animal-microbe interactions, elucidation of the mechanisms involved in establishing and maintaining the association [12]. 2. Materials and Methods 2.1. Site Selection A 150?m line-transect was established on the West Maui patch reef at 20° 48.399′N, 156° 36.064′W. Wave activity here is dampened by an outer barrier reef. Commercial and residential

References

[1]  L. Muscatine and E. Cernichiari, “Assimilation of photosynthetic products of zooxanthellae by a reef coral,” The Biological Bulletin, vol. 137, pp. 506–523, 1969.
[2]  N. Knowlton and F. Rohwer, “Multispecies microbial mutualisms on coral reefs: the host as a habitat,” American Naturalist, vol. 162, no. 4, pp. S51–S62, 2003.
[3]  B. E. Brown and J. C. Bythell, “Perspectives on mucus secretion in reef corals,” Marine Ecology Progress Series, vol. 296, pp. 291–309, 2005.
[4]  F. Rohwer, V. Seguritan, F. Azam, and N. Knowlton, “Diversity and distribution of coral-associated bacteria,” Marine Ecology Progress Series, vol. 243, pp. 1–10, 2002.
[5]  K. B. Ritchie and G. W. Smith, “Microbial communities of coral surface mucopolysaccharide layers,” in Coral Health and Disease, E. Rosenberg and Y. Loya, Eds., pp. 259–278, Springer, New York, NY, USA, 2004.
[6]  L. Wegley, Y. Yu, M. Breitbart, V. Casas, D. I. Kline, and F. Rohwer, “Coral-associated archaea,” Marine Ecology Progress Series, vol. 273, pp. 89–96, 2004.
[7]  T. D. Ainsworth, M. Fine, L. L. Blackall, and O. Hoegh-Guldberg, “Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities,” Applied and Environmental Microbiology, vol. 72, no. 4, pp. 3016–3020, 2006.
[8]  I. S. Johnston and F. Rohwer, “Microbial landscapes on the outer tissue surfaces of the reef-building coral Porites compressa,” Coral Reefs, vol. 26, no. 2, pp. 375–383, 2007.
[9]  T. D. Ainsworth and O. Hoegh-Guldberg, “Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress,” Aquatic Biology, vol. 4, no. 3, pp. 289–296, 2008.
[10]  S. Sunagawa, T. Z. Desantis, Y. M. Piceno et al., “Bacterial diversity and white Plague disease-associated community changes in the caribbean coral Montastraea faveolata,” ISME Journal, vol. 3, no. 5, pp. 512–521, 2009.
[11]  M. Garren, L. Raymundo, J. Guest, C. D. Harvell, and F. Azam, “Resilience of coral-associated bacterial communities exposed to fish farm effluent,” PLoS One, vol. 4, no. 10, Article ID e7319, 2009.
[12]  E. G. Ruby, “Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis,” Annual Review of Microbiology, vol. 50, pp. 591–624, 1996.
[13]  R. C. Schmitt, Hawai‘i Data Book, Mutual Publishing, Honolulu, Hawaii, USA, 2002.
[14]  D. Gulko, Hawaiian Coral Reef Ecology, Mutual Publishing, Honolulu, Hawaii, USA, 1998.
[15]  S. B. Galloway, T. M. Work, and V. S. Bochsler, “Coral disease and health workshop: coral histopathology II,” NOAA Technical Memorandum NOS NCCOS 56 and NOAA Techical Memorandum CRCP, National Oceanic and Atmospheric Administration, Silver Springs, Md, USA, 2007.
[16]  A. L. Reysenbach, L. J. Giver, G. S. Wickham, and N. R. Pace, “Differential amplification of ribosomal-RNA genes by polymerase chain-reaction,” Applied and Environmental Microbiology, vol. 58, pp. 3417–3418, 1992.
[17]  W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991.
[18]  J. Sambrook, E. F. Fritsch, and T. Maniatis, Eds., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1989.
[19]  T. Huber, G. Faulkner, and P. Hugenholtz, “Bellerophon: a program to detect chimeric sequences in multiple sequence alignments,” Bioinformatics, vol. 20, no. 14, pp. 2317–2319, 2004.
[20]  T. Z. DeSantis, P. Hugenholtz, N. Larsen et al., “Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 5069–5072, 2006.
[21]  J. R. Cole, B. Chai, R. J. Farris et al., “The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data,” Nucleic Acids Research, vol. 35, no. 1, pp. D169–D172, 2007.
[22]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[23]  P. D. Schloss and J. Handelsman, “Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness,” Applied and Environmental Microbiology, vol. 71, no. 3, pp. 1501–1506, 2005.
[24]  R. K. Colwell, X. M. Chang, and J. Chang, “Interpolating, extrapolating, and comparing incidence-based species accumulation curves,” Ecology, vol. 85, no. 10, pp. 2717–2727, 2004.
[25]  C. X. Mao, R. K. Colwell, and J. Chang, “Estimating the species accumulation curve using mixtures,” Biometrics, vol. 61, no. 2, pp. 433–441, 2005.
[26]  W. Ludwig, O. Strunk, R. Westram et al., “ARB: a software environment for sequence data,” Nucleic Acids Research, vol. 32, no. 4, pp. 1363–1371, 2004.
[27]  J. Oksanen, R. Kindt, and R. B. O'Hara, “Vegan: community ecology package,” 2005.
[28]  R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2005.
[29]  H. Ducklow and R. Mitchell, “Bacterial populations and adaptations in the mucus layers on living corals,” Limnology and Oceanography, vol. 24, pp. 715–725, 1979.
[30]  J. S. Klaus, I. Janse, J. M. Heikoop, R. A. Sanford, and B. W. Fouke, “Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution,” Environmental Microbiology, vol. 9, no. 5, pp. 1291–1305, 2007.
[31]  S. Sunagawa, C. M. Woodley, and M. Medina, “Threatened corals provide underexplored microbial habitats,” PLoS One, vol. 5, no. 3, Article ID e9554, 2010.
[32]  M. Kurahashi and A. Yokota, “Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata,” Systematic and Applied Microbiology, vol. 30, no. 3, pp. 202–206, 2007.
[33]  C. S. Yang, M. H. Chen, A. B. Arun, C. A. Chen, J. T. Wang, and W. M. Chen, “Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata,” International Journal of Systematic and Evolutionary Microbiology, vol. 60, no. 5, pp. 1158–1162, 2010.
[34]  B. Little, P. Wagner, P. Angell, and D. White, “Correlation between localized anodic areas and Oceanospirillum biofilms on copper,” International Biodeterioration and Biodegradation, vol. 37, no. 3-4, pp. 159–162, 1996.
[35]  D. G. Bourne and C. B. Munn, “Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef,” Environmental Microbiology, vol. 7, no. 8, pp. 1162–1174, 2005.
[36]  K. M. E. Gnanambal, C. Chellaram, and J. Patterson, “Isolation of antagonistic marine bacteria from the surface of the gorgonian corals at Tuticorin, south east coast of India,” Indian Journal of Marine Sciences, vol. 34, no. 3, pp. 316–319, 2005.
[37]  K. B. Ritchie, “Regulation of microbial populations by coral surface mucus and mucus-associated bacteria,” Marine Ecology Progress Series, vol. 322, pp. 1–14, 2006.
[38]  V. Casas, D. I. Kline, L. Wegley, Y. Yu, M. Breitbart, and F. Rohwer, “Widespread association of a Rickettsiales-like bacterium with reef-building corals,” Environmental Microbiology, vol. 6, no. 11, pp. 1137–1148, 2004.
[39]  M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade,” Nature, vol. 418, no. 6898, pp. 630–633, 2002.
[40]  M. V. Brown and S. P. Donachie, “Evidence for tropical endemicity in the Deltaproteobacteria Marine Group B/SAR324 bacterioplankton clade,” Aquatic Microbial Ecology, vol. 46, no. 2, pp. 107–115, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133