全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于3D ResUnet网络的肺结节分割

DOI: DOI:10.3969/j.issn.1005-202X.2019.11.021

Keywords: 肺结节, 分割, 深度残差结构, 召回率, ResUnet

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:将深度残差结构和U-Net网络结合形成新的网络ResUnet,并利用ResUnet深度学习网络结构对胸部CT影像进行图像分割以提取肺结节区域。方法:使用的CT影像数据来源于LUNA16数据集,首先对CT图像预处理提取出肺实质,然后对其截取立体图像块并进行数据增强来扩充样本数,形成相应的肺结节掩膜图像,最后将生成的样本输入到ResUnet模型中进行训练。结果:本研究模型最终的精度和召回率分别为35.02%和97.68%。结论:该模型能自动学习肺结节特征,为后续的肺癌自动诊断提供可靠基础,减少临床诊断的成本并节省医生诊断的时间。 【关键词】肺结节;分割;深度残差结构;召回率;ResUne

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133