|
- 2020
基于特征选择的阿尔茨海默症辅助诊断DOI: 10.3969/j.issn.1005-202X.2020.05.024 Keywords: 阿尔茨海默症, 磁共振成像, 支持向量机, 递归特征消除, 线性判别分析 Abstract: 阿尔茨海默症(AD)是一种在老年人中多发的脑部神经疾病,致病原因迄今未明,在疾病发展早期难以诊断。随着 计算机和人工智能技术的大力发展,利用磁共振成像(MRI)技术和机器学习方法辅助医生对AD进行辅助诊断不断取得 新的成果。本研究提出一种基于支持向量机递归特征消除(SVM-RFE)和线性判别分析(LDA)的AD辅助诊断方法。首 先对MRI图像进行预处理,获得90个大脑脑区的灰质体积;然后使用SVM-RFE和LDA相结合的方法,对90个大脑脑区 灰质体积进行特征选择;最后通过SVM进行分类。通过对来自于ADNI数据库中的34名AD、26名主观记忆衰退(SMC) 患者和50名正常被试(NC)的MRI图像分析,得到AD/NC、AD/SMC和NC/SMC的平均分类准确率分别为94.0%、100.0% 和93.6%。实验结果证明,本研究提出的方法可有效提取样本特征,辅助医生诊断AD
|