|
- 2020
基于对抗训练的U-Net神经网络在稀疏投影CT图像增强的应用DOI: 10.3969/j.issn.1005-202X.2020.05.016 Keywords: CT图像增强, U-Net神经网络, 对抗训练, 稀疏投影 Abstract: 目的:针对稀疏投影的CT重建图像附带噪声和伪影的特性,使用神经网络模型对稀疏投影得到的低质量CT重建 图像进行图像增强。方法:在残差编码-解码卷积神经网络基础上提出一种基于对抗训练的U-Net神经网络模型,并使用 公开数据集TCGA-CESC癌症CT影像进行模型训练和测试。评价模型处理效果的指标包括峰值信噪比(PSNR)、结构相 似性(SSIM)和均方根误差(RMSE)。结果:在对180 次探测的CT重建图像的测试中,模型处理后的图像相比未处理图 像,PSNR、SSIM和RMSE指标平均值分别提升15.10%、37.89%和38.20%。在PSNR和SSIM指标平均值意义下,模型处 理后的图像优于1 800次探测的未处理CT重建图像。结论:本研究提出的神经网络模型能够减少伪影和噪点,对稀疏投 影CT图像增强有一定效果
|