全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Structural Framework of the Erlangping Group in North Qinling, Central China

DOI: 10.1155/2012/850282

Full-Text   Cite this paper   Add to My Lib

Abstract:

As one major unit of the North Qinling tectonic belt, and being located in the north side of the UHP belt between the Yangtze block and the North China block, the Erlangping Group has become one hot research spot because it still keeps records of both plate and inner-continent evolution histories. Three aspects of the Erlangping Group are reviewed. (1) Research history are concluded into three stages, including the determination of rock assemblages before the late 1980s, the regional metamorphism laws solution in the 1990s, and the formation time and tectonic background discussion in the 2000s. (2) Five major controversies and frontier scientific problems have been offered, such as, the deformation ages determination, the Cretaceous tectonic event definition, the determination of the deformation mechanisms and conditions, the kinematic and dynamic nature of the Zhuyangguan-Xiaguan shear zone, and the reconstruction of the evolution and exhumation history. (3) Structural framework of the Erlangping Group is divided into five parts according to our field and laboratory study, including the Erjingou slab, the Damiao-Wantan shear zone, the Huoshenmiao slab, the Xiaozhai-Erlangping shear zone, and the Baoshuping slab. Only the Xiaozhai-Erlangping shear zone has clear kinematic marks of left lateral slip. 1. Introduction The Erlangping Group, neighbouring the Qinling Group to the south by the Zhuyangguan-Xiaguan boundary shear zone along where ultra high pressure metamorphic rocks were found near the Guanpo Town, and connecting with the Kuanping Group by the Waxuezi-Qiaoduan shear zone (Figure 1). In recent years, with continuously enriched inner and regional related research achievements [1–20], the Erlangping Group is gradually becoming a hot research area. Figure 1: Tectonic position of the Erlangping Group in the North Qinling tectonic belt (after [ 38, 41]). 2. Research History Conclusions of research records of the Erlangping Group indicate one obvious tendency, that is, from the qualitative research of internal combination before 1980s, role of regional metamorphism and thermochronology in the 1990s, and to the time limit research of the construction and comprehensive study in the 21st century. 2.1. The Determination of the Rock Assemblage before the Late 1980s The cross-section from south to north of the Erlangping Group contains the Zimugou Formation, the Baoshuping Formation, the Xiaozhai Formation, the Huoshenmiao Formation, the Damiao Formation, and the Erjingou Formation. And it is a set of construction of a spilite keratophyre-sedimentary

References

[1]  Q. R. Meng and G. W. Zhang, “Geologic framework and tectonic evolution of the Qinling orogen, Central China,” Tectonophysics, vol. 323, no. 3-4, pp. 183–196, 2000.
[2]  W. Sun, S. Li, Y. Sun, G. Zhang, and Q. Li, “Mid-paleozoic collision in the North Qinling: Sm–Nd, Rb–Sr and 40Ar/39Ar ages and their tectonic implications,” Journal of Asian Earth Sciences, vol. 21, no. 1, pp. 69–76, 2002.
[3]  J. S. Yang, Z. Q. Xu, X. Z. Pei et al., “Discovery of diamonds North Qinling: evidence for a giant UHPM belt across Central China and recognition of Paleozoic and mesozoic dual deep subduction between the North China and Yangtze plates,” Acta Geologica Sinica, vol. 76, no. 4, pp. 484–495, 2002.
[4]  J. S. Yang, Z. Q. Xu, L. F. Dobrzhinetskaya et al., “Discovery of metamorphic diamonds in Central China: an indication of a -km-long zone of deep subduction resulting from multiple continental collisions,” Terra Nova, vol. 15, no. 6, pp. 370–379, 2003.
[5]  Z. Q. Wang, T. Wang, Z. Yan, and Q. R. Yan, “Late Paleozoic forearc accretionary piggyback type basin system in the South Qinling, Central China,” Geological Bulletin of China, vol. 21, no. 8-9, pp. 456–464, 2002.
[6]  Z. Q. Wang, Q. R. Yan, Z. Yan et al., “New division of the main tectonic units of the Qinling orogenic belt, Central China,” Acta Geologica Sinica, vol. 83, no. 11, pp. 1527–1546, 2009.
[7]  L. Ratschbacher, B. R. Hacker, A. Calvert et al., “Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history,” Tectonophysics, vol. 366, no. 1-2, pp. 1–53, 2003.
[8]  A. L. Zhang, C. J. Wei, W. Tian, et al., “Low-pressure metamorphism of Erlangping Group in North Qinling Mountains,” Acta Petrologica et Mineralogica, vol. 23, no. 1, pp. 26–36, 2004.
[9]  W. Tian and C. J. Wei, “The Caledonian low Al-TTD series from the Northern Qinling orogenic belt: rock properties, genetic simulation and geological implication,” Science in China, Series D, vol. 48, no. 11, pp. 1837–1847, 2005.
[10]  C. Z. Song, M. L. Niu, and G. S. Liu, “Some thoughts on strain research on the Qinling-Dabie orogenic belt,” Journal of Hefei University of Technology (Natural Science), vol. 28, no. 7, pp. 719–726, 2005.
[11]  C. Z. Song, G. W. Zhang, Y. S. Wang, J. H. Li, Z. C. Chen, and Z. C. Cai, “The constraints of strain partitioning and geochronology in luonan-luanchuan tectonic belts on qinling orogenic belt,” Science in China, Series D, vol. 52, no. 3, pp. 300–312, 2009.
[12]  T. Wang, X. Z. Pei, X. X. Wang, N. G. Hu, W. P. Li, and G. W. Zhang, “Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling orogen (China): an example of oblique extrusion of deep-seated metamorphic rocks in a collisional orogen,” Journal of Geology, vol. 113, no. 2, pp. 181–200, 2005.
[13]  T. Wang, X. X. Wang, W. Tian, C. L. Zhang, W. P. Li, and S. Li, “North Qinling Paleozoic granite associations and their variation in space and time: implications for orogenic processes in the orogens of Central China,” Science in China, Series D, vol. 52, no. 9, pp. 1359–1384, 2009.
[14]  Z. Q. Xu, Y. L. Lu, Y. Q. Tang, and Z. T. Zhang, Formation of the Composite Eastern Qinling Chains, Environmental Science Press, Beijing, China, 1988.
[15]  J. F. Xu, Y. W. Han, and B. R. Zhang, “Geochemistry of the Mian-Lue ophiolites in the Qinling Mountains, Central China: constraints on the evolution of the Qinling orogenic belt and collision of the North and South China Cratons,” Journal of Asian Earth Sciences, vol. 32, no. 5-6, pp. 336–347, 2008.
[16]  F. Wang, X. X. Lu, C. H. Lo et al., “Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (Central China): 40Ar/39Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen,” Journal of Asian Earth Sciences, vol. 31, no. 2, pp. 153–166, 2007.
[17]  X. Wang, T. Wang, B. M. Jahn, N. Hu, and W. Chen, “Tectonic significance of late Triassic post-collisional lamprophyre dykes from the Qinling Mountains (China),” Geological Magazine, vol. 144, no. 5, pp. 837–848, 2007.
[18]  X. Wang, T. Wang, I. Haapala, and J. Mao, “P-T conditions of crystallization and origin of plagioclase-mantled alkali feldspar megacrysts in the Mesozoic granitoids in the Qinling orogen (China),” Lithos, vol. 103, no. 3-4, pp. 289–308, 2008.
[19]  S. Lai, J. F. Qin, L. Chen, and R. Grapes, “Geochemistry of ophiolites from the Mian-Lue suture zone: implications for the tectonic evolution of the Qinling orogen, Central China,” International Geology Review, vol. 50, no. 7, pp. 650–664, 2008.
[20]  Y. P. Dong, G. W. Zhang, F. Neubauer, X. Liu, J. Genser, and C. Hauzenberger, “Tectonic evolution of the Qinling orogen, China: review and synthesis,” Journal of Asian Earth Sciences, vol. 41, no. 3, pp. 213–237, 2011.
[21]  Henan Provincial Bureau of Geology, 1?:?50000 Northern Xixia County, Regional Geological Survey Report of the People's Republic of China 1–159, 1973.
[22]  S. Y. Xiao, W. J. Zhang, Z. J. Song, et al., Metamorphic Stratum of the North Qinling, Xi an Jiaotong University Press, 1988.
[23]  J. Liu, Metamorphism of the Erlangping Group in the East Qinling [M.S. thesis], The Peking University, 1987.
[24]  E. P. Zhang, et al., Ed., Overview of Geological-Structural Features in the Qinling-Dabashan Region, Geological Publishing House, Beijing, China, 1993.
[25]  F. Pei, Y. G. Zhang, and C. L. Liu, “Discovery and geological significance of the late Paleozoic spore fossils in North Qinling, Henan Province,” Regional Geology of China, vol. 2, pp. 112–117, 1995.
[26]  G. H. Liu, S. G. Zhang, Z. D. You, et al., Major Metamorphic Groups and Their Metamorphic Evolution in the Qinling Orogenic Belt, Geological Publishing House, Beijing, China, 1993.
[27]  D. L. Zhao, N. G. Hu, and S. Y. An, “40Ar/39Ar Plateau age spectra of Erlangping Group, North Qinling and their geological implications,” Acta Mineralogica Sinica, vol. 18, no. 1, pp. 101–104, 1998.
[28]  S. T. Suo, Z. Q. Zhong, and Y. H. Hu, “Tectonic boundary between Proterozoic and Paleozoic terrains in the Northern part of the Xixia and Neixiang, Henan Province,” Scientia Geologica Sinica, vol. 1, pp. 12–21, 1990.
[29]  Z. Q. Zhong, Z. D. You, and S. T. Suo, “Petrological study on the ductile shear zones in the core of the Eastern Qinling orogenic belt, Western Henan,” Acta Geologica Sinica, vol. 66, no. 2, pp. 121–130, 1990.
[30]  Y. Sun, X. X. Lu, S. Han, G. W. Zhang, et al., “Composition and formation of Paleozoic Erlangping ophiolitic slab, North Qinling: evidence from geology and geochemistry,” Scinece in China, pp. 49–55, 1996.
[31]  Y.L. Li, “Geological characteristics of tectonic boundary between Erangping and Qinling Lithologenietic unit in the Northern Qinling Mountain,” Geology of Shannxi, vol. 16, no. 2, pp. 9–16, 1998.
[32]  Y. L. Li, G. W. Zhang, and C. Z. Song, “Characteristics of Bidirectional subduction of Erlangping Backarc Basin,” Geological Journal of China Universities, vol. 4, no. 3, pp. 286–293, 1998.
[33]  M. S. Wang, X. Q. Wu, F. Song, et al., “The eastablishment of the main structural framework of the Maoji-Erlangping down-faulted zone in Henan and its significance,” Regional Geology of China, vol. 18, no. 1, pp. 23–27, 1999.
[34]  G. W. Zhang, B. R. Zhang, X. C. Yuan, et al., Qinling Orogenic Belt and Continental Dynamics, Science Press, Beijing, China, 2001.
[35]  L. D. Gao, Z. Q. Wang, and T. Wang, “New discovery of spores from the huoshenmiao formation of Erlangping Group, Xixia, Henan Province,” Geological Bulletin of China, vol. 25, no. 11, pp. 1287–1294, 2006.
[36]  Y. P. Dong, G. W. Zhang, and B. Q. Zhu, “Proterozoic tectonics and evolutionary history of the North Qinling Terrane,” Acta Geoscientia Sinica, vol. 24, no. 1, pp. 3–10, 2003.
[37]  Q. R. Yan, Z. Q. Wang, Z. Yan et al., “Timing of the transformation from seafloor spreading on the South margin of the North China block to subduction within the North Qinling orogenic belt,” Acta Geologica Sinica, vol. 83, no. 11, pp. 1565–1583, 2009.
[38]  H. Y. Zhang, Z. Q. Wang, J. L. Liu, et al., “The late Mesozoic extension-slipping-contraction of the Erlangping Group in the North Qinling tectonic belt, Central China,” Journal of Geomechanics, vol. 15, no. 1, pp. 56–68, 2009.
[39]  N. S. Chen and Z. D. You, “An 40Ar/39Ar age spectrum of hornblende and its geological significances to Qinling Group in Shewei Area, Western Henan,” Acta Petrologica Sinica, vol. 6, no. 4, pp. 54–58, 1990.
[40]  Z. Q. Zhang, D. Y. Liu, and G. M. Fu, Isotopic Geochronology on Metamorphic Strata in the Northern Qinling Belt, Geological Publishing House, Beijing, China, 1994.
[41]  Z. Q. Zhang, G. W. Zhang, D. Y. Liu, et al., Isotopic Geochronology and Geochemistry of Ophioloits, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt, Geological Publishing House, Beijing, China, 2006.
[42]  G. Zhu, Y. Wang, G. Liu, M. Niu, C. Xie, and C. Li, “40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China,” Journal of Structural Geology, vol. 27, no. 8, pp. 1379–1398, 2005.
[43]  G. Zhu, D. Jiang, B. Zhang, and Y. Chen, “Destruction of the Eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics,” Gondwana Research, vol. 22, no. 1, pp. 86–103, 2012.
[44]  F. Y. Wu, J. Q. Lin, S. A. Wilde, X. Zhang, and J. H. Yang, “Nature and significance of the early cretaceous giant igneous event in Eastern China,” Earth and Planetary Science Letters, vol. 233, no. 1-2, pp. 103–119, 2005.
[45]  M. G. Zhai, Q. C. Fan, H. F. Zhang, J. L. Sui, and J. A. Shao, “Lower crustal processes leading to Mesozoic lithospheric thinning beneath Eastern North China: underplating, replacement and delamination,” Lithos, vol. 96, no. 1-2, pp. 36–54, 2007.
[46]  J. Deng, S. Su, Y. Niu et al., “A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism,” Lithos, vol. 96, no. 1-2, pp. 22–35, 2007.
[47]  T. Wang, Y. Zheng, T. Li, and Y. Gao, “Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth,” Journal of Asian Earth Sciences, vol. 23, no. 5, pp. 715–729, 2004.
[48]  J. Liu, G. A. Davis, L. Zhiyong, and F. Wu, “The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: a likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas,” Tectonophysics, vol. 407, no. 1-2, pp. 65–80, 2005.
[49]  J. Liu, H. Guan, M. Ji, and L. Hu, “Late Mesozoic metamorphic core complexes: new constraints on lithosphere thinning in North China,” Progress in Natural Science, vol. 16, no. 6, pp. 633–638, 2006.
[50]  D. P. Yan, M. F. Zhou, H. L. Song, G. H. Wang, and M. Sun, “Mesozoic extensional structures of the Fangshan tectonic dome and their subsequent reworking during collisional accretion of the North China Block,” Journal of the Geological Society, vol. 163, no. 1, pp. 127–142, 2006.
[51]  G. Xing, Q. Lu, R. Chen et al., “Study on the ending time of Late Mesozoic tectonic regime transition in south China—comparing to the Yanshan area in North China,” Acta Geologica Sinica, vol. 82, no. 4, pp. 451–463, 2008.
[52]  W. Lin, P. Monié, M. Faure et al., “Cooling paths of the NE China crust during the Mesozoic extensional tectonics: example from the South-Liaodong peninsula metamorphic core complex,” Journal of Asian Earth Sciences, vol. 42, no. 5, pp. 1048–1065, 2011.
[53]  H. Y. Zhang, Q. L. Hou, and D. Y. Cao, “Tectono-chronologic constraints on a Mesozoic slip and thrust belt in the Eastern Jiaodong Peninsula,” Science in China, Series D, vol. 50, no. 1, pp. 25–32, 2007.
[54]  W. Sun, X. Ding, Y. H. Hu, and X. H. Li, “The golden transformation of the Cretaceous plate subduction in the West Pacific,” Earth and Planetary Science Letters, vol. 262, no. 3-4, pp. 533–542, 2007.
[55]  Q. Hou, Q. Liu, J. Li, and H. Y. Zhang, “Late Mesozoic shear zones and its chronology in the Dabie Mountains, Central China,” Scientia Geologica Sinica, vol. 42, no. 1, pp. 114–123, 2007.
[56]  Q. D. Xu, Z. Q. Zhong, and F. W. Yang, “40Ar/39Ar dating of the Xiaoqinling gold area in Henan Province,” Geological Review, vol. 44, no. 3, pp. 323–327, 1998.
[57]  X. H. Chen, A. Yin, G. E. Gehrels et al., “Two phases of Mesozoic North-South extension in the Eastern Altyn Tagh range, Northern Tibetan Plateau,” Tectonics, vol. 22, no. 5, pp. 8-1–8-22, 2003.
[58]  X. Y. Ma, “On analytical tectonics,” Earth Science—Journal of Wuhan College of Geology, vol. 22, no. 3, pp. 1–9, 1983.
[59]  C. Passchier and R. Trouw, Microtectonics, Springer, Berlin, Germany, 2nd edition, 2005.
[60]  R. H. Vernon and G. L. Clarke, Principles of Metamorphic Petrology, Cambridge University Press, 2008.
[61]  R. A. J. Trouw, C. W. Passchier, and D. J. Wiersma, Atlas of Mylonites- and Related Microstructures, Springer, Berlin, Germany, 2010.
[62]  M. Stipp and K. Kunze, “Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates,” Tectonophysics, vol. 448, no. 1–4, pp. 77–97, 2008.
[63]  D. A. Wark and E. B. Watson, “TitaniQ: a titanium-in-quartz geothermometer,” Contributions to Mineralogy and Petrology, vol. 152, no. 6, pp. 743–754, 2006.
[64]  W. M. Behr and J. P. Platt, “A naturally constrained stress profile through the middle crust in an extensional terrane,” Earth and Planetary Science Letters, vol. 303, no. 3-4, pp. 181–192, 2011.
[65]  E. A. J. Burke, “Raman microspectrometry of fluid inclusions,” Lithos, vol. 55, no. 1–4, pp. 139–158, 2001.
[66]  V. Lüders, B. Plessen, and R. Primio, “Stable carbon isotopic ratios of CH4–CO2-bearing fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin (Germany)—a tool for tracing gas sources and maturity,” Marine and Petroleum Geology, vol. 30, no. 1, pp. 174–183, 2012.
[67]  M. Slobodník, R. Melichar, V. Hurai, and R. J. Bakker, “Litho-stratigraphic effect on Variscan fluid flow within the Prague synform, Barrandian: evidence based on C, O, Sr isotopes and fluid inclusions,” Marine and Petroleum Geology. In press.
[68]  Z. G. Mu, “The laser microprobe 40Ar/39Ar dating method,” Earth Science Frontiers, vol. 10, no. 2, pp. 301–307, 2003.
[69]  M. Beltrando, G. S. Lister, M. Forster, W. J. Dunlap, G. Fraser, and J. Hermann, “Dating microstructures by the 40Ar/39Ar step-heating technique: deformation-pressure-temperature-time history of the Penninic Units of the Western Alps,” Lithos, vol. 113, no. 3-4, pp. 801–819, 2009.
[70]  E. H. Rutter and K. H. Brodie, “Rheology of the lower crust,” in Geology of the Lower Continental Crust, D. Fountain, R. Arculus, and R. Kay, Eds., pp. 201–268, Elsevier, Amsterdam, The Netherlands, 1992.
[71]  G. Hirth, C. Teyssier, and J. W. Dunlap, “An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks,” International Journal of Earth Sciences, vol. 90, no. 1, pp. 77–87, 2001.
[72]  H. Stünitz, J. D. Fitz Gerald, and J. Tullis, “Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals,” Tectonophysics, vol. 372, no. 3-4, pp. 215–233, 2003.
[73]  L. Mehl and G. Hirth, “Plagioclase preferred orientation in layered mylonites: evaluation of flow laws for the lower crust,” Journal of Geophysical Research B, vol. 113, no. 5, Article ID B05202, 2008.
[74]  C. Sassier, P. H. Leloup, D. Rubatto, O. Galland, Y. Yue, and D. Lin, “Direct measurement of strain rates in ductile shear zones: a new method based on syntectonic dikes,” Journal of Geophysical Research B, vol. 114, no. 1, Article ID B01406, 2009.
[75]  H. W. Zhou and N. S. Chen, “Metamorphism, deformation and metamorphic reactions of low-pressure metamorphic belt in East Qinling orogenic belt, Western Henan,” Earth Science—Journal of China University of Geosciences, vol. 19, no. 1, pp. 9–18, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133