全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2009 

位势流动和非均匀介质中声波方程的36种形式

DOI: 10.6052/1000-0992-2009-5-J2008-071

Keywords: 位势流动, 非均匀介质

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 声波方程是对大多数声学问题进行数学描述的出发点. 那些得到 广泛应用的经典波动方程及对流波动方程都存在苛刻的适用条件, 即仅适用于描述处于静态或匀速运动状态的定常 均匀介质中的线性无耗散声波. 然而, 很多实际场合并不满足这些严格的适用条件. 本文对经典声波方程和对流声波 方程进行推广, 导出了编号为W1$\sim$W36的36种不同形式的声波方程, 涵盖了处于静止、势流或旋涡流状态下的非均匀 和/或非定常介质中的声波传播问题. 所考虑的声波传播情形包括: (1) 线性波, 即具有小梯度(小振幅)性质; (2)非线性波, 即具有陡峭梯度性质, 包括``波纹''(小振幅大梯度)或者大振幅波. 本文仅考虑非耗散声波, 即排除了由剪切、体积黏度及热传导所引起的耗散. 对具有匀熵或等熵(熵沿流线守恒)性质的均匀介质和非均匀介质中的声传播进行了研究但非等熵(即耗散)情况除外; 另外, 对非定常介质中的 声波问题也进行了分析. 所涉及的介质可以处于静止、匀速运动状态, 或者是非匀速的和/或非定常的平均流动, 包括: (1)低Mach数的势平均流(即不可压缩的平均态), 或高速势平均流(即非均匀可压缩的平均流); ② 变截面管 道中的准一维传播, 包括无平均流的号管和具有低或高Mach数平均流的喷管; 或③平面的、空间的、或轴对称的单 向剪切平均流. 本文没有探讨其他类型的旋涡平均流(将与耗散及其他情形一起留待下一步研究), 例如, 可能与剪切效应相结合的轴对称旋转平均流. 通过对流体力学的一般方程进行消元处理或根据声学变分原理, 导出了36种波动方程, 对一些波动方程还采用这两种方法进行相互校验. 尽管声波方程的36种形式没有涵盖非线性、非均匀与非定常及非匀速运动介质 这3个效应的所有可能的组合情形, 但它们的确包括了孤立状态下的各种效应, 并包括了多种多重效应组合的 情形. 虽然经典波动方程和对流波动方程仅适用于处于静止(或匀速运动)的均匀定常介质中的线性无耗散声波, 但它们在 相关文献中已被广泛采用; 本文给出的36种声波方程提供了它们多种有用的推广形式. 在许多实际应用中, 经典波动方 程和对流波动方程仅是粗略的近似, 声波方程的更一般形式可提供更令人满意的理论模型. 本文每节末尾给出了这些应用 的众多范例. 在这篇评论文章中引用了240篇参考文献

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133