Centuries of resource extraction have impacted coral reef ecosystems worldwide. In response, area and fishery closures are often enacted to restore previously exploited populations and reestablish diminished ecosystem function. During the 19th and 20th centuries, monk seals, pearl oysters, and two lobster species were overharvested in the Northwestern Hawaiian Islands, now managed as the Papahānaumokuākea Marine National Monument, one of the largest conservation areas in the world. Despite years of protection, these taxa have failed to recover. Here, we review each case, discussing possible factors that limit population growth, including: Allee effects, interspecific interactions, and time lags. Additionally, large-scale climate changes may have altered the overall productivity of the system. We conclude that overfishing of coral reef fauna may have broad and lasting results; once lost, valuable resources and services do not quickly rebound to pre-exploitation levels. In such instances, management options may be limited to difficult choices: waiting hundreds of years for recovery, actively restoring populations, or accepting the new, often less desirable, alternate state. 1. Introduction For centuries, coral reef ecosystems have been viewed as renewable resources, from which countless organisms have been harvested to serve dependent human communities [1, 2]. There is an underlying assumption that marine species are highly resilient to large population reductions and that abundance may be quickly restored by area or fishery closures [3–5]. The capacity for self-repair, however, is dependent upon the extent of human impact and system resilience [6, 7]. Excessive and prolonged anthropogenic exploitation may reduce resilience, that is, the capacity of a system to persist while maintaining key relationships and absorbing disturbances [8]. For example, 15 years after fishery closures, there has been little recovery of several marine fish stocks that were previously reduced 45%–99% [9, 10]. Thrush and Dayton [11] review several examples of marine ecosystem ratchets, in which recovery to pre-exploitation levels is no longer possible [12]. In such instances, managers are forced to accept the new, often less desirable, alternate ecosystem state. The Northwestern Hawaiian Islands (NWHI) span the center of the Hawaiian-Emperor seamount chain, the world’s most geographically isolated archipelago (Figure 1) [13]. As of 2006, these small islands, atolls, reefs, and surrounding areas comprise the Papahānaumokuākea Marine National Monument, one of the largest marine
References
[1]
J. B. C. Jackson, M. X. Kirby, W. H. Berger et al., “Historical overfishing and the recent collapse of coastal ecosystems,” Science, vol. 293, no. 5530, pp. 629–637, 2001.
[2]
J. M. Pandolfi, R. H. Bradbury, E. Sala et al., “Global trajectories of the long-term decline of coral reef ecosystems,” Science, vol. 301, no. 5635, pp. 955–958, 2003.
[3]
D. R. Bellwood, T. P. Hughes, C. Folke, and M. Nystr?m, “Confronting the coral reef crisis,” Nature, vol. 429, no. 6994, pp. 827–833, 2004.
[4]
T. P. Hughes, D. R. Bellwood, C. Folke, R. S. Steneck, and J. Wilson, “New paradigms for supporting the resilience of marine ecosystems,” Trends in Ecology and Evolution, vol. 20, no. 7, pp. 380–386, 2005.
[5]
C. Folke, “Resilience: the emergence of a perspective for social-ecological systems analyses,” Global Environmental Change, vol. 16, no. 3, pp. 253–267, 2006.
[6]
L. H. Gunderson, “Ecological resilience—in theory and application,” Annual Review of Ecology and Systematics, vol. 31, pp. 425–439, 2000.
[7]
C. Folke, S. Carpenter, B. Walker et al., “Regime shifts, resilience, and biodiversity in ecosystem management,” Annual Review of Ecology, Evolution, and Systematics, vol. 35, pp. 557–581, 2004.
[8]
C. S. Holling, “Resilience and stability of ecological systems,” Annual Review of Ecology and Systematics, vol. 4, pp. 1–23, 1973.
[9]
J. A. Hutchings, “Collapse and recovery of marine fishes,” Nature, vol. 406, no. 6798, pp. 882–885, 2000.
[10]
J. A. Hutchings and J. D. Reynolds, “Marine fish population collapses: consequences for recovery and extinction risk,” BioScience, vol. 54, no. 4, pp. 297–309, 2004.
[11]
S. F. Thrush and P. K. Dayton, “What can ecology contribute to ecosystem-based management?” Annual Review of Marine Science, vol. 2, pp. 419–441, 2010.
[12]
S. R. Palumbi, K. L. McLeod, and D. Grünbaum, “Ecosystems in action: lessons from marine ecology about recovery, resistance, and reversibility,” BioScience, vol. 58, no. 1, pp. 33–42, 2008.
[13]
J. J. Rooney, P. Wessel, R. Hoeke, et al., “Geology and geomorphology of coral reefs in the Northwestern Hawaiian Islands,” in Coral Reefs of the World, B. M. Riegl and R. E. Dodge, Eds., pp. 519–571, Springer, Dordrecht, The Netherlands, 2008.
[14]
A. M. Friedlander, G. Aeby, R. Brainard, et al., “The state of coral reef ecosystems of the Northwestern Hawaiian Islands,” in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States, pp. 270–311, NOAA/National Centers for Coastal Ocean Science, Silver Spring, Md, USA, 2005.
[15]
K. A. Selkoe, B. S. Halpern, C. M. Ebert et al., “A map of human impacts to a “pristine” coral reef ecosystem, the Papahānaumokuākea Marine National Monument,” Coral Reefs, vol. 28, no. 3, pp. 635–650, 2009.
[16]
N. Knowlton and J. B. Jackson, “Shifting baselines, local impacts, and global change on coral reefs,” PLoS Biology, vol. 6, no. 2, article e54, 2008.
[17]
S. A. Lebo and K. T. M. Johnson, “Geochemical sourcing of rock specimens and stone artifacts from Nihoa and Necker Islands, Hawai'i,” Journal of Archaeological Science, vol. 34, no. 6, pp. 858–871, 2007.
[18]
C. A. Ely and R. B. Clapp, “The natural history of Laysan Island, Northwestern Hawaiian Islands,” Atoll Research Bulletin, vol. 171, pp. 1–361, 1973.
[19]
G. H. Balazs and M. Chaloupka, “Thirty-year recovery trend in the once depleted Hawaiian green sea turtle stock,” Biological Conservation, vol. 117, no. 5, pp. 491–498, 2004.
[20]
National Marine Fisheries Service, Recovery Plan for the Hawaiian Monk Seal (Monachus schauinslandi). Second Revision, National Marine Fisheries Service, Silver Spring, Md, USA, 2007.
[21]
B. B. Clapp and W. O. Wirtz II, “The natural history of Lisianski Island, Northwestern Hawaiian Islands,” Atoll Research Bulletin, vol. 186, pp. 1–196, 1975.
[22]
D. H. R. Spennemann, “Excessive exploitation of Central Pacific seabird populations at the turn of the 20th century,” Marine Ornithology, vol. 26, no. 1-2, pp. 49–57, 1998.
[23]
T. J. Ragen, “Human activities affecting the population trends of the Hawaiian monk seal,” in Life in the Slow Lane—Ecology and Conservation of Long-Lived Marine Animals, J. A. Musick, Ed., American Fisheries Society Symposium 23, pp. 183–194, American Fisheries Society, Bethesda, Md, USA, 1999.
[24]
W. C. Stubbs, Report on the Agricultural Resources and Capabilities of Hawaii, U.S. Department of Agriculture, Washington, DC, USA, 1901.
[25]
J. N. Cobb, “Commercial fisheries of the Hawaiian Islands,” in U. S. Fish Commission Report for 1901, pp. 353–499, Government Printing Office, Washington, DC, USA, 1902.
[26]
F. D. Walker, Log of the Kaalokai, The Hawaiian Gazette, Honolulu, Hawaii, USA, 1909.
[27]
A. Vatter, “Bottom longline fishing for sharks in the Northwestern Hawaiian Islands,” Administrative Report ARPIR- 03-01, National Marine Fisheries Service, Pacific Islands Region, 2003.
[28]
S. Hau, “Economic analysis of deep bottomfishing in the Northwestern Hawaiian Islands,” in Proceedings of the 2nd Symposium on Resource Investigations in the Northwestern Hawaiian Islands, R. W. Grigg and K. Y. Tanoue, Eds., pp. 265–282, University of Hawaii Sea Grant College Program, Honolulu, Hawaii, USA, 1984.
[29]
P. S. Galtsoff, “Pearl and Hermes Reef, Hawaii hydrographical and biological observations,” Bernice P. Bishop Museum Bulletin, vol. 107, p. 49, 1933.
[30]
R. G. Grigg, “Precious coral fisheries of Hawaii and the U.S. Pacific Islands,” Marine Fisheries Review, vol. 55, no. 2, pp. 50–60, 1993.
[31]
J. J. Polovina, “The lobster and shrimp fisheries in Hawaii,” Marine Fisheries Review, vol. 55, no. 2, pp. 28–33, 1993.
[32]
G. T. DiNardo and R. Marshall, “Status of lobster stocks in the Northwestern Hawaiian Islands, 1998–2000,” Administrative Report H-01-04, Honolulu Laboratory, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Honolulu, Hawaii, USA, 2001.
[33]
W. C. Allee, “Co-operation among animals,” American Journal of Sociology, vol. 37, pp. 386–398, 1931.
[34]
Y. Lisiansky, A Voyage around the World in the Years 1803–1806 in the Ship Neva, John Booth, London, UK, 1814.
[35]
L. M. Hiruki and T. J. Ragen, “A compilation of historical (Monachus schauinslandi) monk seal counts,” Technical Memorandum, US Department of Commerce, NOAA, 1992.
[36]
J. K. Schultz, J. D. Baker, R. J. Toonen, and B. W. Bowen, “Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi),” Journal of Heredity, vol. 100, no. 1, pp. 25–33, 2009.
[37]
K. W. Kenyon and D. W. Rice, “Life history of the Hawaiian monk seal,” Pacific Science, vol. 13, pp. 215–252, 1959.
[38]
D. W. Rice, “Population dynamics of the Hawaiian monk seal,” Journal of Mammalogy, vol. 41, pp. 276–385, 1960.
[39]
W. G. Gilmartin, T. C. Johanos, and T. Gerrodette, “Estimates of population size for the Hawaiian monk seal (Monachus schauinslandi), 1983–88,” Technical Memorandum, US Department of Commerce, NOAA, 1991.
[40]
G. A. Antonelis, J. D. Baker, T. C. Johanos, R. C. Braun, and A. L. Harting, “Hawaiian monk seal (Monachus schauinslandi): status and conservation issues,” Atoll Research Bulletin, vol. 543, pp. 75–101, 2006.
[41]
J. V. Carretta, K. A. Forney, M. S. Lowry, et al., “U. S. Pacific marine mammal stock assessments: 2009,” Technical Memorandum, US Department of Commerce, NOAA, 2009.
[42]
International Union for Conservation of Nature and Natural Resources (IUCN), “IUCN Red List of Threatened Species. Version 2009.2,” http://www.iucnredlist.org.
[43]
N. J. Gemmell, P. J. Allen, S. J. Goodman, and J. Z. Reed, “Interspecific microsatellite markers for the study of pinniped populations,” Molecular Ecology, vol. 6, no. 7, pp. 661–666, 1997.
[44]
M. B. Kretzmann, W. G. Gilmartin, A. Meyer et al., “Low genetic variability in the Hawaiian monk seal,” Conservation Biology, vol. 11, no. 2, pp. 482–490, 1997.
[45]
B. M. Aldridge, L. Bowen, B. R. Smith, G. A. Antonelis, F. Gulland, and J. L. Stott, “Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population,” Immunogenetics, vol. 58, no. 2-3, pp. 203–215, 2006.
[46]
J. K. Schultz, A. J. Marshall, and M. Pfunder, “Genome-wide loss of diversity in the critically endangered Hawaiian monk seal,” Diversity, vol. 2, pp. 863–880, 2010.
[47]
D. Agashe, “The stabilizing effect of intraspecific genetic variation on population dynamics in novel and ancestral habitats,” American Naturalist, vol. 174, no. 2, pp. 255–267, 2009.
[48]
M. P. Craig and T. J. Ragen, “Body size, survival, and decline of juvenile Hawaiian monk seals, Monachus schauinslandi,” Marine Mammal Science, vol. 15, no. 3, pp. 786–809, 1999.
[49]
J. J. Polovina, “Model of a coral reef ecosystem—I. The ECOPATH model and its application to French Frigate Shoals,” Coral Reefs, vol. 3, no. 1, pp. 1–11, 1984.
[50]
M. A. DeCrosta, L. R. Taylor, and J. D. Parrish, “Age determination, growth, and energetics of three species of carcharhinid sharks in Hawaii,” in Proceedings of the 2nd Symposium on Resource Investigations in the Northwestern Hawaiian Islands, pp. 75–95, University of Hawai'i Sea Grant College Program, Honolulu, Hawaii, USA, 1984.
[51]
A. E. Sudekum, J. D. Parrish, R. L. Radtke, and S. Ralston, “Life history and ecology of large jacks in undisturbed, shallow, oceanic communities,” Fishery Bulletin, vol. 89, no. 3, pp. 493–513, 1991.
[52]
G. D. Goodman-Lowe, “Diet of the Hawaiian monk seal (Monachus schauinslandi) from the Northwestern Hawaiian Islands during 1991 to 1994,” Marine Biology, vol. 132, no. 3, pp. 535–546, 1998.
[53]
F. A. Parrish, G. J. Marshall, B. Buhleier, and G. A. Antonelis, “Foraging interaction between monk seals and large predatory fish in the Northwestern Hawaiian Islands,” Endangered Species Research, vol. 4, no. 3, pp. 299–308, 2008.
[54]
J. D. Baker, A. L. Harting, T. A. Wurth, and T. C. Johanos, “Dramatic shifts in Hawaiian monk seal distribution predicted from divergent regional trends,” Marine Mammal Science. In press.
[55]
A. M. Friedlander and E. E. DeMartini, “Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators,” Marine Ecology Progress Series, vol. 230, pp. 253–264, 2002.
[56]
B. S. Stewart, G. A. Antonelis, J. D. Baker, and P. K. Yochem, “Foraging biogeography of Hawaiian monk seals in the Northwestern Hawaiian Islands,” Atoll Research Bulletin, vol. 543, pp. 131–145, 2006.
[57]
F. A. Parrish, “Do monk seals exert top-down pressure in subphotic ecosystems?” Marine Mammal Science, vol. 25, no. 1, pp. 91–106, 2009.
[58]
E. E. Keenan, R. Brainard, and L. Basch, “Historical and present status of the pearl oyster, Pinctada margaritifera, in the Northwestern Hawaiian Islands,” in Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Fla, USA, 2008.
[59]
E. E. Keenan, R. E. Brainard, and L. V. Basch, “Historical and present status of the pearl oyster, Pinctada margaritifera, at pearl and hermes atoll, Northwestern Hawaiian Islands,” Atoll Research Bulletin, vol. 543, pp. 333–344, 2006.
[60]
R. B. Moffitt, “Pearl oysters in Hawaii,” Hawaiian Shell News, vol. 42, no. 4, pp. 3–4, 1994.
[61]
J. Maragos and D. Gulko, Coral Reef Ecosystems of the Northwestern Hawaiian Islands: Interim Rresults Emphasizing the 2000 Surveys, U.S. Fish and Wildlife Service and the Hawai'i Department of Land and Natural Resources, Honolulu, Hawaii, USA, 2002.
[62]
S. Pouvreau, A. Gangnery, J. Tiapari, F. Lagarde, M. Garnier, and A. Bodoy, “Gametogenic cycle and reproductive effort of the tropical black-lip pearl oysters, Pinctada margaritafera (Bivalve: Pteriidae), cultivated in Takapoto Atoll (French Polynesia),” Aquatic Living Resources, vol. 13, pp. 37–48, 2000.
[63]
R. A. Rose and S. B. Baker, “Larval and spat culture of the Western Australian silver- or goldlip pearl oyster, Pinctada maxima Jameson (Mollusca: Pteriidae),” Aquaculture, vol. 126, no. 1-2, pp. 35–50, 1994.
[64]
S. Pouvreau, G. Jonquières, and D. Buestel, “Filtration by the pearl oyster, Pinctada margaritifera, under conditions of low seston load and small particle size in a tropical lagoon habitat,” Aquaculture, vol. 176, no. 3-4, pp. 295–314, 1999.
[65]
E. Vacelet, A. Arnoux, and B. Thomassin, “Particulate material as an indicator of pearl-oyster excess in the Takapoto lagoon (Tuamotu, French polynesia),” Aquaculture, vol. 144, no. 1–3, pp. 133–148, 1996.
[66]
T. C. Prins, A. C. Smaal, and R. F. Dame, “A review of the feedbacks between bivalve grazing and ecosystem processes,” Aquatic Ecology, vol. 31, no. 4, pp. 349–359, 1997.
[67]
R. N. Uchida, J. N. Uchiyama, R. L. Humphreys Jr., and D. T. Tagami, “Biology, distribution, and estimates of apparent abundance of the spiny lobster, Panulirus marginatus (Quoy and Gaimard), in waters of the Northwestern Hawaiian Islands—part 1: distribution in relation to depth and geographical areas and estimates of apparent abundance,” in Proceedings of the Symposium on Status of Resource Investigations in the Northwestern Hawaiian Islands, R. W. Grigg and R. T. Pfund, Eds., pp. 121–130, University of Hawaii Sea Grant College Program, Honolulu, Hawaii, USA, 1980.
[68]
R. N. Uchida and D. T. Tagami, “Biology, distribution, population structure, and pre-exploitation abundance of spiny lobster, Panulirus marginatus (Quoy and Gaimard), in the Northwestern Hawaiian Islands,” in Proceedings of the 2nd Symposium on Resource Investigations in the Northwestern Hawaiian Islands, R. W. Grigg and K. Y. Tanoue, Eds., pp. 157–198, University of Hawaii Sea Grant College Program, Honolulu, Hawaii, USA, 1984.
[69]
R. P. Clarke, S. S. Yoshimoto, and S. G. Pooley, “A bioeconomic analysis of the Northwestern Hawaiian Islands lobster fishery,” Marine Resource Economics, vol. 7, pp. 115–140, 1992.
[70]
G. T. Dinardo and R. B. Moffitt, “The Northwestern Hawaiian Islands lobster fishery: a targeted slipper lobster fishery,” in The Biology and Fisheries of the Slipper Lobster, K. L. Lavalli and E. Spanier, Eds., pp. 243–262, CRC Press, Boca Raton, Fla, USA, 2007.
[71]
C. D. MacDonald and J. S. Stimson, “Population biology of spiny lobsters in the lagoon at Kure Atoll: preliminary findings and progress to date,” in Proceedings of the Symposium on Status of Resource Investigations in the Northwestern Hawaiian Islands, R. W. Grigg and R. T. Pfund, Eds., pp. 161–174, University of Hawaii Sea Grant College Program, Honolulu, Hawaii, USA, 1980.
[72]
J. J. Polovina, “Density dependence in spiny lobster, Panulirus marginatus, in the northwestern Hawaiian Islands,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 46, no. 4, pp. 660–665, 1989.
[73]
L. Botsford, G. DiNardo, M. Fogarty, D. Goodman, and J. Hampton, “Workshop proceedings on the development of spatially structured population models for Northwestern Hawaiian Islands lobster resources,” Administrative Report H-02-01, National Marine Fisheries Service, Southwest Fisheries Science Center, Honolulu, Hawaii, USA, 2002.
[74]
J. M. O’Malley, “Spatial and temporal variability in growth of Hawaiian spiny lobsters in the Northwestern Hawaiian Islands,” Marine and Coastal Fisheries, vol. 1, pp. 325–342, 2009.
[75]
E. E. DeMartini and H. A. Williams, “Fecundity and egg size of Scyllarides squammosus (Decapoda: Scyllaridae) at Maro Reef, Northwestern Hawaiian Islands,” Journal of Crustacean Biology, vol. 21, no. 4, pp. 891–896, 2001.
[76]
E. E. DeMartini, G. T. DiNardo, and H. A. Williams, “Temporal changes in population density, fecundity, and egg size of the Hawaiian spiny lobster (Panulirus marginatus) at Necker Bank, Northwestern Hawaiian Islands,” Fishery Bulletin, vol. 101, no. 1, pp. 22–31, 2003.
[77]
E. E. DeMartini, “Compensatory reproduction in Northwestern Hawaiian Islands lobsters,” Atoll Research Bulletin, vol. 543, pp. 201–215, 2006.
[78]
R. N. Lipcius, W. T. Stockhausen, D. B. Eggleston, L. S. Marshall Jr., and B. Hickey, “Hydrodynamic decoupling of recruitment, habitat quality and adult abundance in the Caribbean spiny lobster: source-sink dynamics?” Marine and Freshwater Research, vol. 48, no. 8, pp. 807–815, 1997.
[79]
F. Courchamp, L. Berec, and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, NY, USA, 2008.
[80]
A. N. Zito-Livingston and M. J. Childress, “Does conspecifc density influence the settlement of Caribbean spiny lobster Panulirus argus postlarvae?” New Zealand Journal of Marine and Freshwater Research, vol. 43, no. 1, pp. 313–325, 2009.
[81]
W. F. Herrnkind, M. J. Childress, and K. L. Lavalli, “Cooperative defence and other benefits among exposed spiny lobsters: inferences from group size and behaviour,” Marine and Freshwater Research, vol. 52, no. 8, pp. 1113–1124, 2001.
[82]
K. L. Lavalli and W. F. Herrnkind, “Collective defense by spiny lobster (Panulirus argus) against triggerfish (Balistes capriscus): effects of number of attackers and defenders,” New Zealand Journal of Marine and Freshwater Research, vol. 43, no. 1, pp. 15–28, 2009.
[83]
M. J. Childress and W. F. Herrnkind, “Den sharing by juvenile Caribbean spiny lobsters (Panulirus argus) in nursery habitat: cooperation or coincidence?” Marine and Freshwater Research, vol. 48, no. 8, pp. 751–758, 1997.
[84]
S. G. Ratchford and D. B. Eggleston, “Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality,” Animal Behaviour, vol. 56, no. 4, pp. 1027–1034, 1998.
[85]
D. E. Pollock, “Recruitment overfishing and resilience in spiny lobster populations,” ICES Journal of Marine Science, vol. 50, no. 1, pp. 9–14, 1993.
[86]
P. A. Breen and T. H. Kendrick, “A fisheries management success story: the Gisborne, New Zealand, fishery for red rock lobsters (Jasus edwardsii),” Marine and Freshwater Research, vol. 48, no. 8, pp. 1103–1110, 1997.
[87]
M. Nonaka, H. Fushimi, and T. Yamakawa, “The spiny lobster fishery in Japan and restocking,” in Spiny Lobsters Fisheries and Culture, B. F. Phillips and J. Kittaka, Eds., pp. 221–242, Blackwell Science, Oxford, UK, 2nd edition, 2000.
[88]
B. F. Phillips and R. Melville-Smith, “Sustainability of the western rock lobster fishery: a review of past progress and future challenges,” Bulletin of Marine Science, vol. 76, no. 2, pp. 485–500, 2005.
[89]
B. F. Phillips and R. Melville-Smith, “Panulirus species,” in Lobsters: Biology, Management, Aquaculture and Fisheries, B. F. Phillips, Ed., pp. 359–384, Blackwell, Oxford, UK, 2006.
[90]
F. A. Parrish and T. L. Martinelli-Liedtke, “Some preliminary findings on the nutritional status of the Hawaiian spiny lobster (Panulirus marginatus),” Pacific Science, vol. 53, no. 4, pp. 361–366, 1999.
[91]
J. D. Parrish, M. W. Callahan, and J. E. Norris, “Fish trophic relationships that structure reef communities,” in Proceedings of the 5th International Coral Reef Congress, pp. 73–78, Tahiti, French Polynesia, 1985.
[92]
J. D. Parrish, J. E. Norris, M. W. Callahan, J. K. Callahan, E. J. Magarifuji, and R. E. Schroeder, “Piscivory in a coral reef fish community,” in Contemporary Studies on Fish Feeding, C. A. Simenstad and G. M. Cailliet, Eds., W. Junk, Dordrecht, The Netherlands, 1986.
[93]
J. J. Polovina, E. Howell, D. R. Kobayashi, and M. P. Seki, “The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources,” Progress in Oceanography, vol. 49, no. 1–4, pp. 469–483, 2001.
[94]
J. D. Baker, J. J. Polovina, and E. A. Howell, “Effect of variable oceanic productivity on the survival of an upper trophic predator, the Hawaiian monk seal Monachus schauinslandi,” Marine Ecology Progress Series, vol. 346, pp. 277–283, 2007.
[95]
J. J. Polovina, F. Chai, E. A. Howell, D. R. Kobayashi, L. Shi, and Y. Chao, “Ecosystem dynamics at a productivity gradient: a study of the lower trophic dynamics around the northern atolls in the Hawaiian Archipelago,” Progress in Oceanography, vol. 77, no. 2-3, pp. 217–224, 2008.
[96]
J. J. Polovina, G. T. Mitchum, N. E. Graham, M. P. Craig, E. E. Demartini, and E. N. Flint, “Physical and biological consequences of a climate event in the central North Pacific,” Fisheries Oceanography, vol. 3, no. 1, pp. 15–21, 1994.
[97]
J. J. Polovina, E. A. Howell, and M. Abecassis, “Ocean's least productive waters are expanding,” Geophysical Research Letters, vol. 35, no. 3, Article ID L03618, 5 pages, 2008.
[98]
A. D. Guerry, “Icarus and Daedalus: conceptual and tactical lessons for marine ecosystem-based management,” Frontiers in Ecology and the Environment, vol. 3, no. 4, pp. 202–211, 2005.
[99]
K. McLeod, J. Lubchenco, S. R. Palumbi, and A. A. Rosenberg, “Scientific consensus statement on marine ecosystem-based management,” 2005, www.compassonline.org/marinescience/solutions_ecosystem.asp.
[100]
A. A. Rosenberg and K. L. McLeod, “Implementing ecosystem-based approaches to management for the conservation of ecosystem services,” Marine Ecology Progress Series, vol. 300, pp. 270–274, 2005.
[101]
S. A. Levin and J. Lubchenco, “Resilience, robustness, and marine ecosystem-based management,” BioScience, vol. 58, no. 1, pp. 27–32, 2008.
[102]
R. E. Grumbine, “What is ecosystem management?” Conservation Biology, vol. 8, no. 1, pp. 27–38, 1994.
[103]
K. K. Arkema, S. C. Abramson, and B. M. Dewsbury, “Marine ecosystem-based management: from characterization to implementation,” Frontiers in Ecology and the Environment, vol. 4, no. 10, pp. 525–532, 2006.
[104]
R. F. Dame and T. C. Prins, “Bivalve carrying capacity in coastal ecosystems,” Aquatic Ecology, vol. 31, no. 4, pp. 409–421, 1997.
[105]
S. Libralato, V. Christensen, and D. Pauly, “A method for identifying keystone species in food web models,” Ecological Modelling, vol. 195, no. 3-4, pp. 153–171, 2006.
[106]
S. Naeem and S. Li, “Biodiversity enhances ecosystem reliability,” Nature, vol. 390, no. 6659, pp. 507–509, 1997.
[107]
D. Tilman, “Causes, consequences and ethics of biodiversity,” Nature, vol. 405, no. 6783, pp. 208–211, 2000.
[108]
S. F. Thrush, J. E. Hewitt, P. K. Dayton et al., “Forecasting the limits of resilience: integrating empirical research with theory,” Proceedings of the Royal Society B, vol. 276, no. 1671, pp. 3209–3217, 2009.
[109]
E. K. Pikitch, C. Santora, E. A. Babcock et al., “Ecosystem-based fishery management,” Science, vol. 305, no. 5682, pp. 346–347, 2004.
[110]
I. Hanski, “Single-species metapopulation dynamics: concepts, models and observations,” Biological Journal of the Linnean Society, vol. 42, no. 1-2, pp. 17–38, 1991.
[111]
J. D. Baker and P. M. Thompson, “Temporal and spatial variation in age-specific survival rates of a long-lived 765 mammal, the Hawaiian monk seal,” Proceedings of the Royal Society B, vol. 274, pp. 407–415, 2007.
[112]
J. K. Schultz, J. D. Baker, R. J. Toonen, A. L. Harting, and B. W. Bowen, “Range-wide connectivity of the Hawaiian monk seal and implications for translocation,” Conservation Biology. In press.
[113]
N. A. Sims and D. J. Sarver, “Bringing back Hawaii's black pearls,” Hawaiian Shell News, vol. 42, pp. 5–6, 1994.
[114]
R. K. Zimmer-Faust and M. N. Tamburri, “Chemical identity and ecological implications of a waterborne, larval settlement cue,” Limnology and Oceanography, vol. 39, no. 5, pp. 1075–1087, 1994.
[115]
T. P. Hughes, “Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef,” Science, vol. 265, no. 5178, pp. 1547–1551, 1994.
[116]
M. J. Rauzon, Isles of Refuge, University of Hawaii, Honolulu, Hawaii, USA, 2001.
[117]
G. H. Balazs, “Synopsis of biological data on the green turtle in the Hawaiian Islands,” Technical Memo NOAA-TM-NMFS-SWFC-7, National Marine Fisheries Service, Southwest Fisheries Science Center, 1980.
[118]
G. H. Balazs, H. F. Hirth, P. Y. Kawamoto, et al., “Interim recovery plan for Hawaiian sea turtles,” Administrative Report H-92-01, National Marine Fisheries Service, Southwest Fisheries Science Center, 1992.
[119]
A. B. Amerson, “The natural history of French Frigate Shoals, Northwestern Hawaiian Islands,” Atoll Research Bulletin, vol. 150, 1971.
[120]
Anonymous, Whaleship Parker Wrecked on Ocean Island, Temperance Advocate and Seaman’s Friend, 1843.
[121]
R. G. Ward, American Activities in the Central Pacific, Gregg Press, Ridgewood, NJ, USA, 1967.
[122]
J. H. Kemble, To California and the South Seas: The Diary of Albert G. Osbun, 1849–1851, Huntington Library, San Marino, Calif, USA, 1966.
[123]
Anonymous, Gambia, August 8, 1859, Entries and Clearances of the Port of Honolulu, 1859.
[124]
Anonymous, Whaleship Parker Wrecked on Ocean Island, Whalemen’s Shipping List, 1843.
[125]
A. Farrell, John Cameron’s Odyssey, Macmillan, New York, NY, USA, 1928.
[126]
A. M. Bailey, The Hawaiian Monk Seal, Museum Pictorial, Denver Museum of Natural History, 1952.
[127]
W. Rothschild, The Avifauna of Laysan and the Neighboring Islands, R. H. Porter, London, UK, 1893.
[128]
G. C. Munro, “Laysan Island in 1891,” Elepaio, vol. 6, pp. 51–69, 1946.
[129]
H. H. Schauinslandi, “Three monks on a coral island (Laysan), translated by M. D. F. Udvardy,” Atoll Research Bulletin, vol. 432, 1899.
[130]
G. Wilder, “A short trip to the Midway Islands with Captain A. P. Niblack in the U.S.S. Iroquois,” Hawaiian Forester and Agriculturist, vol. 2, pp. 390–396, 1905.
[131]
H. R. Dill and W. A. Bryan, “Report on an expedition to Laysan Island in 1911,” U.S. Department of Agriculture Biological Survey Bulletin, vol. 42, pp. 1–30, 1912.
[132]
A. M. Bailey, “Birds of midway and Laysan Islands,” Museum Pictorial, vol. 12, pp. 1–130, 1956.
[133]
P. W. Woodward, “The natural history of Kure Atoll, Northwestern Hawaiian Islands,” Atoll Research Bulletin, vol. 164, 1972.
[134]
T. M. Blackman, “Rarest seal,” Natural History, vol. 47, pp. 138–139, 1941.
[135]
A. Svihla, “Notes on the Hawaiian monk seal,” Journal of Mammalogy, vol. 40, pp. 226–229, 1959.
[136]
A. M. Johnson, R. L. Delong, C. H. Fiscus, and K. W. Kenyon, “Population status of the Hawaiian monk seal (Monachus schauinslandi), 1978,” Journal of Mammalogy, vol. 63, no. 3, pp. 415–421, 1982.