全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2012 

State Space Modeling and Short-Term Traffic Speed Prediction Using Kalman Filter Based on ANFIS

DOI: 10.7763/IJET.2012.V4.330

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract—Speed is an important component in any traffic control or monitoring systems especially for road safety. This paper presents a novel short-term traffic speed prediction model using Adaptive Neuro Fuzzy Inference System (ANFIS). By applying this method, despite nonlinear nature of traffic, linear time variant state space model will be presented. Kalman Filter (KF), based on this model, will reduce modeling error and modify prediction accuracy. Using this method, KF will be applied to the nonlinear system so Jacobian computations of Extended Kalman Filter (EKF) that is essential for nonlinear systems are not needed. Another advantage of suggested method is that there is no need to design different ANFIS structure for different predict horizons in order to obtain acceptable prediction accuracy, because the error due to the model structure is to some extent reduced by filter. Simulation results with real data sets indicate that this model is an efficient way which surpasses a common multilayer feed forward Neural Network (MLFNN) and an ANFIS predictive model.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133