全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Delay-Tolerant, Low-Power Protocols for Large Security-Critical Wireless Sensor Networks

DOI: 10.1155/2012/863521

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reports the analysis, implementation, and experimental testing of a delay-tolerant and energy-aware protocol for a wireless sensor node, oriented to security applications. The solution proposed takes advantages from different domains considering as a guideline the low power consumption and facing the problems of seamless and lossy connectivity offered by the wireless medium along with very limited resources offered by a wireless network node. The paper is organized as follows: first we give an overview on delay-tolerant wireless sensor networking (DTN); then we perform a simulation-based comparative analysis of state-of-the-art DTN approaches and illustrate the improvement offered by the proposed protocol; finally we present experimental data gathered from the implementation of the proposed protocol on a proprietary hardware node. 1. Introduction In recent years, wireless sensor networks (WSN) research has grown exponentially spreading through several fields of science, from circuit design to algorithm design, antenna design, and protocol design. The main constraints that a generic WSN node has to deal with can be summarized by its limited computing resources and its energy consumption requirements. While the computing resources and corresponding consumed energy tend to grow with silicon technology improvements, available energy budget does not advance very fast with battery technology or can even be bounded in other cases (i.e., energy scavenged from the environment). Power management must therefore be taken into account at every level of the design of any WSN. In security-critical applications, the deployment of large networks faces—among others—the implications of delay variability on the correct operation of security algorithms. This paper illustrates the results of an industrial work on the analysis, optimization, implementation, and experimental testing of a dedicated protocol featuring delay tolerance and energy efficiency for large WSNs in the security application domain. This paper is organized as follows: in Section 2 we present an overview on wireless sensor networking with particular regard to delay-tolerant networking (DTN) and specifically to the DTN logical link control (LLC) layer, with the aim of stating general and direct hints for the protocol design. Section 3 illustrates a dedicated DTN simulation framework and presents simulation results on existing widely used protocols compared with the newly proposed protocol. Section 4 presents the test methodology and the experimental results on a working application of the new

References

[1]  I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.
[2]  B. Maaref, S. Nasri, and P. Sicard, “Communication system for industrial automation,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE'97), vol. 3, pp. 1286–1291, July 1997.
[3]  W. Hou, S. Hu, R. Li, and M. Fei, “A wireless industrial networks protocol stack with time synchronization and node positioning,” in Proceedings of the IET Conference on Wireless, Mobile and Sensor Networks 2007 (CCWMSN'07), pp. 1077–1080, Shanghai, China, December 2007.
[4]  S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM'04), vol. 34, no. 4, pp. 145–158, New York, NY, USA, September 2004.
[5]  C. K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems, Prentice Hall, New York, NY, USA, 2001.
[6]  “Proactive and reactive routing in wireless sensor networking,” http://it.wikipedia.org/wiki/MANET.
[7]  M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra, “Implementing delay tolerant networking,” Intel Corporation, 2004, http://www.dtnrg.org/docs/papers/demmer-irb-tr-04-020.pdf.
[8]  http://www.selex-si-uk.com/pdf/Masterzone.pdf.
[9]  K. A. Harras, K. C. Almeroth, and E. M. Belding-Royer, “Delay tolerant mobile networks (DTMNs): controlled flooding in sparse mobile networks,” in Proceedings of the 4th IFIP-TC6 International Conference on Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communication Systems (NETWORKING'05), pp. 1180–1192, May 2005.
[10]  “ONE,” simulator web page, http://www.netlab.tkk.fi/tutkimus/dtn/theone/.
[11]  T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient routing scheme for intermittently connected mobile networks,” in Proceedings of the ACM SIGCOMM Workshop on Delay-Tolerant Networking (WDTN'05), pp. 252–259, August 2005.
[12]  B. Pásztor, M. Musolesi, and C. Mascolo, “Opportunistic mobile sensor data collection with SCAR,” in Proceedings of the IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS'07), pp. 1–12, Pisa, Italy, October 2007.
[13]  OMNET++, http://www.omnetpp.org/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133