全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ARQ-Aware Scheduling and Link Adaptation for Video Transmission over Mobile Broadband Networks

DOI: 10.1155/2012/369803

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies the effect of ARQ retransmissions on packet error rate, delay, and jitter at the application layer for a real-time video transmission at 1.03?Mbps over a mobile broadband network. The effect of time-correlated channel errors for various Mobile Station (MS) velocities is evaluated. In the context of mobile WiMAX, the role of the ARQ Retry Timeout parameter and the maximum number of ARQ retransmissions is taken into account. ARQ-aware and channel-aware scheduling is assumed in order to allocate adequate resources according to the level of packet error rate and the number of ARQ retransmissions required. A novel metric, namely, goodput per frame, is proposed as a measure of transmission efficiency. Results show that to attain quasi error free transmission and low jitter (for real-time video QoS), only QPSK 1/2 can be used at mean channel SNR values between 12?dB and 16?dB, while 16QAM 1/2 can be used below 20?dB at walking speeds. However, these modes are shown to result in low transmission efficiency, attaining, for example, a total goodput of 3?Mbps at an SNR of 14?dB, for a block lifetime of 90?ms. It is shown that ARQ retransmissions are more effective at higher MS speeds. 1. Introduction Mobile WiMAX (IEEE 802.16e) [1] and 3GPP LTE (Long-Term Evolution) [2] represent mobile broadband standards that offer high user data rates and support for bandwidth hungry video applications. Both standards use very similar PHY and MAC layer techniques, especially for downlink (DL) transmission. In order to provide strong QoS, cross-layer adaptive strategies must be implemented in the wireless network [3, 4]. Video applications demand a low Packet Error Rate (PER), which may be achieved via the use of MAC layer Automatic Repeat ReQuest (ARQ) and the choice of suitable Modulation and Coding Schemes (MCS). However, ARQ consumes additional bandwidth and causes increased end-to-end latency and jitter. ARQ is controlled in the MAC layer by the block lifetime and ARQ Retry Timer parameters, which define how many and how frequently retransmissions may occur. Link adaptation is used in mobile broadband networks to improve the PER by matching the QAM constellation and forward error correction coding rate to the time varying channel quality. The impact of specific ARQ parameters and mechanisms has been extensively studied in the literature, for example, [5–9]. In [8], the authors analyze delay and throughput using probabilistic PHY layer error modelling. In [9], packet errors were modelled as an uncorrelated process in time. Often packet errors are modelled

References

[1]  IEEE Standard for Local and metropolitan area networks part 16: 802.16, IEEE Std., 2006.
[2]  LTE, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (3GPP TS 36.300 version 10.5.0 Release 10), 3GPP Std., http://www.3gpp.org/ftp/Specs/html-info/36300.htm.
[3]  O. Oyman, J. Foerster, Y. J. Tcha, and S. C. Lee, “Toward enhanced mobile video services over WiMAX and LTE,” IEEE Communications Magazine, vol. 48, no. 8, pp. 68–76, 2010.
[4]  I. Cerutti, F. Meucci, P. Castoldi, and L. Pierucci, “An adaptive cross-layer strategy for QoS-guaranteed links in 4G networks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '08), pp. 1–5, New Orleans, La, USA, December 2008.
[5]  H. Martikainen, A. Sayenko, O. Alanen, and V. Tykhomyrov, “Optimal MAC PDU size in IEEE 802.16,” in Proceedings of the 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks (IT-NEWS '08), pp. 66–71, Venice, Italy, February 2008.
[6]  A. Sayenko, V. Tykhomyrov, H. Martikainen, and O. Alanen, “Performance analysis of the IEEE 802.16 ARQ mechanism,” in Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM '07), pp. 314–322, ACM, October 2007.
[7]  F. Hou, J. She, P. H. Ho, and X. Shen, “Performance analysis of ARQ with opportunistic scheduling in IEEE 802.16 networks,” in Proceedings of the 50th Annual IEEE Global Telecommunications Conference (GLOBECOM '07), pp. 4759–4763, Washington, DC, USA, November 2007.
[8]  W. Wang, Z. Guo, X. Shen, and C. Chen, “Performance analysis of ARQ scheme in IEEE 802.16,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '06), pp. 1–5, San Francisco, Calif, USA, December 2006.
[9]  W. Wang, Z. Guo, X. Shen, C. Chen, and J. Cai, “Dynamic bandwidth allocation for QoS provisioning in IEEE 802.16 networks with ARQ-SA,” IEEE Transactions on Wireless Communications, vol. 7, no. 9, pp. 3477–3487, 2008.
[10]  M. Chatterjee, S. Sengupta, and S. Ganguly, “Feedback-based real-time streaming over WiMax,” IEEE Wireless Communications, vol. 14, no. 1, pp. 64–71, 2007.
[11]  W. Jianfeng, M. Venkatachalam, and F. Yuguang, “System architecture and cross-layer optimization of video broadcast over WiMAX,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 4, pp. 712–721, 2007.
[12]  C. So-In, R. Jain, and A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 2, pp. 156–171, 2009.
[13]  A. Sayenko, O. Alanen, and T. H?m?l?inen, “ARQ aware scheduling for the IEEE 802.16 base station,” in Proceedings of the IEEE International Conference on Communications (ICC '08), pp. 2667–2673, Beijing, China, May 2008.
[14]  S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast in WiMAX networks,” in Proceedings of the 27th IEEE Communications Society Conference on Computer Communications (INFOCOM '08), pp. 1579–1587, Phoenix, Ariz, USA, April 2008.
[15]  3GPP TR 25.996 V6.1.0 Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Release 6), 3GPP Std., 2009.
[16]  Mobile System Profile, WMF-T23-001-R010v09, WiMAX Forum Std., 2010.
[17]  IEEE 802.16m Evaluation Methodology Document (EMD) IEEE 802.16m-08/004r5, IEEE 802.16 Broadband Wireless Access Working Group Std., 2009, http://ieee802.org/16.
[18]  V. Sgardoni, D. Halls, S. M. M. Bokhari, D. Bull, and A. Nix, “Mobile WiMAX video quality and transmission efficiency,” in Proceedings of the IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC '11), pp. 1077–1082, September 2011.
[19]  A. Esmailpour and N. Nasser, “Dynamic QoS-based bandwidth allocation framework for broadband wireless networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2690–2700, 2011.
[20]  IEEE Standard for Local and metropolitan area networks part 16: Air Interface for Broadband WirelessAccess Systems 802.16-2009, IEEE Std., 2009.
[21]  Mobile WiMAX—part I: A Technical Overview and Performance Evaluation, WiMAX Forum Std., 2006.
[22]  L. Wan, S. Tsai, and M. Almgren, “A fading-insensitive performance metric for a unified link quality model,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '06), pp. 2110–2114, April 2006.
[23]  D. Halls, A. Nix, and M. Beach, “System level evaluation of UL and DL interference in OFDMA mobile broadband networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '11), pp. 1271–1276, Quintana Roo, Mexico, March 2011.
[24]  V. Sgardoni, P. Ferré, A. Doufexi, A. Nix, and D. Bull, “Frame delay and loss analysis for video transmission over time-correlated 802.11A/G channels,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '07), pp. 1–5, Athens, Greece, September 2007.
[25]  M. Tran, D. Halls, A. Nix, A. Doufexi, and M. Beach, “Mobile WiMAX: MIMO performance analysis from a quality of service (QoS) viewpoint,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '09), pp. 1–6, Budapest, Hungary, April 2009.
[26]  C. Cicconetti, A. Erta, L. Lenzini, and E. Mingozzi, “Performance evaluation of the IEEE 802.16 MAC for QoS support,” IEEE Transactions on Mobile Computing, vol. 6, no. 1, pp. 26–38, 2007.
[27]  “video test sequences,” http://media.xiph.org/video/derf/.
[28]  H. Jenka?, T. Stockhammer, and G. Liebl, “H.264/AVC video transmission over MBMS in GERAN,” in Proceedings of the IEEE 6th Workshop on Multimedia Signal Processing, pp. 191–194, October 2004.
[29]  T. Stockhammer and M. M. Hannuksela, “H.264/AVC video for wireless transmission,” IEEE Wireless Communications, vol. 12, no. 4, pp. 6–13, 2005.
[30]  M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing over packet-switched networks,” IEEE/ACM Transactions on Networking, vol. 8, no. 4, pp. 479–492, 2000.
[31]  S. Liang and D. Cheriton, “TCP-RTM: using TCP for real time multimedia applications,” in International Conference on Network Protocols, 2002.
[32]  WiMAX Forum Air Interface Specifications, WiMAX Forum Mobile System Profile, Release 1.0, WMF-T23- 001-R010v09, WiMAX Forum Std., 2007.
[33]  D. Wu, Y. T. Hou, and Y. Q. Zhang, “Transporting real-time video over the Internet: challenges and approaches,” Proceedings of the IEEE, vol. 88, no. 12, pp. 1855–1877, 2000.
[34]  3GPP TS 26.346 V8.0.0 (2008-10) Universal Mobile Telecommunications System (UMTS); Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs, ETSI Std., 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133