全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Highly Accurate Timestamping for Ethernet-Based Clock Synchronization

DOI: 10.1155/2012/152071

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is not only for test and measurement of great importance to synchronize clocks of networked devices to timely coordinate data acquisition. In this context the seek for high accuracy in Ethernet-based clock synchronization has been significantly supported by enhancements to the Network Time Protocol (NTP) and the introduction of the Precision Time Protocol (PTP). The latter was even applied to instrumentation and measurement applications through the introduction of LXI. These protocols are usually implemented in software; however, the synchronization accuracy can only substantially be improved by hardware which supports drawing of precise event timestamps. Especially, the quality of the timestamps for ingress and egress synchronization packets has a major influence on the achievable performance of a distributed measurement or control system. This paper analyzes the influence of jitter sources remaining despite hardware support and proposes enhanced methods for up to now unmatched timestamping accuracy in Ethernet-based synchronization protocols. The methods shown in this paper reach sub-nanosecond accuracy, which is proven in theory and practice. 1. Introduction In instrumentation and measurement, the General Purpose Interface Bus (GPIB) was for a long time the system for data collection and networking of equipment. This bus system has a dedicated wiring for triggering devices and to simultaneously start measurements. The reason for the continuous usage of this relatively old technology is the excellent tool and driver support and the simplicity of the system. Despite these arguments, GPIB has several drawbacks in the handling (connectors, cable) and generality of the approach. First of all GPIB is limited in terms of cable length and number of bus devices. The parallel data transfer and strict arbitration scheme also limit the achievable data rate and make handling and configuration quite complicated for the user. Second, GPIB is also limited in terms of its functionality and does not comply to modern networked systems. A solution for the test and measurement industry to tackle the drawbacks of GPIB can be found in the LAN extensions for instrument (LXI) [1] approach. This de facto standard uses the well-established Ethernet technology to network measurement devices. The advantage is clearly that one can embed such a system seamlessly into office and lab networks having all advantages of a full network functionality. The application in test and measurement is however only feasible if it can be ensured that the devices are properly triggered. The

References

[1]  LAN eXtensions for Instrumentation (LXI), LXI Standard, 2008. http://www.lxistandard.org.
[2]  D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.
[3]  J. Ridoux and D. Veitch, “Ten microseconds over LAN, for free (extended),” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 6, pp. 1841–1848, 2009.
[4]  “IEEE standard for a precision clock synchronization protocol for networked measurement and control systems,” in Proceedings of the IEEE Standards Interpretations for IEEE Std 1588–2008 (Revision of IEEE Std 1588-2002), pp. c1–c269, Piscataway, NJ, USA, July 2008.
[5]  A. Marco, R. Casas, J. L. S. Ramos, V. Coarasa, A. Asensio, and M. Obaidat, “Synchronization of multihop wireless sensor networks at the application layer,” IEEE Wireless Communications, vol. 18, no. 1, pp. 82–88, 2011.
[6]  “Specific requirements part 3: carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications,” in Proceedings of the IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks, IEEE Computer Society, New York, NY, USA, December 2008.
[7]  P. Ferrari, A. Flammini, D. Marioli, and A. Taroni, “A distributed instrument for performance analysis of real-time ethernet networks,” IEEE Transactions on Industrial Informatics, vol. 4, no. 1, Article ID 4475682, pp. 16–25, 2008.
[8]  R. Ben-El-Kezadri and G. Pau, “TimeRemap: stable and accurate time in vehicular networks,” IEEE Communications Magazine, vol. 48, no. 12, Article ID 5673072, pp. 52–57, 2010.
[9]  P. Loschmidt, R. Exel, A. Nagy, and G. Gaderer, “Limits of synchronization accuracy using hardware support in IEEE 1588,” in Proceedings of the IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS '08), pp. 12–16, Ann Arbor, Mich, USA, 2008.
[10]  D. Rosselot, “Application Note: DP83848 and DP83849 100Mb Data Latency,” Tech. Rep. 1507, National Semiconductor, Santa Clara, Calif, USA, 2006.
[11]  P. Loschmidt, On enhanced clock synchronization performance through dedicated ethernet hardware support, Ph.D. dissertation, Vienna University of Technology, Vienna, Austria, 2010.
[12]  R. Exel and P. Loschmidt, “High accurate timestamping by phase and frequency estimation,” in Proceedings of the International IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS '09), pp. 126–131, Brescia, Italy, October 2009.
[13]  (2011, Mar) PLL Clock Management Features in Altera FPGAs. Altera Corporation, http://www.altera.com/support/devices/pll_clock/pll-overview.html.
[14]  J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki, “Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution,” IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 1, pp. 51–55, 1997.
[15]  R. Szplet, J. Kalisz, and R. Szymanowski, “Interpolating time counter with 100 ps resolution on a single FPGA device,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 4, pp. 879–883, 2000.
[16]  B. Amrutur, P. K. Das, and R. Vasudevamurthy, “0.84?ps Resolution clock skew measurement via subsampling,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1–9, 2010.
[17]  X. Zhu, G. Sun, S. Yong, and Z. Zhuang, “A high-precision time interval measurement method using phase-estimation algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 11, pp. 2670–2676, 2008.
[18]  S. M. Kay, Fundamentals of Statistical Signal Processing, vol. 1 of Estimation Theory, Prentice Hall, New York, NY, USA, 1993.
[19]  X. Dai and I. H. R. Gretsch, “Quasi-synchronous sampling algorithm and its applications,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 2, pp. 204–209, 1994.
[20]  D. W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 34, no. 6, pp. 647–654, 1988.
[21]  “IEEE Std. 1588–2002 IEEE standard for a precision clock synchronization protocol for networked measurement and control systems,” in Proceedings of the IEEE Standards Interpretations for IEEE Std 1588–2002, pp. i–144, Piscataway, NJ, USA, November 2002, replaced by 61588-2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133