Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine. 1. Introduction Natural gas, because of cleaner nature of its combustion and also lower price compared with conventional liquid fuels, is the most attractive and widely accepted among alternative gaseous fuels. Diesel engines could easily be designed or modified to use natural gas in power production. Due to relative high compression ratio, high thermal efficiency is achievable from these engines. The objective is to increase the percentage of natural gas used as fuel by improving the engine design and combustion process with least exhaust emissions, together with thermal efficiencies compatible with the base engine [1]. There are some problems associated with the diesel engines conversion to dual fuel mode of operation. One of the problems is the knock occurrence at high load operation that the maximum power output of a dual fuel engine is limited by knock and another is the power loss due to lower power density of gaseous fuels. A great deal of numerical research into knock phenomena and power loss in dual fuel engines has been carried out. The combustion models, which are used for investigation, could be divided into two groups: multizone models and multi-dimensional models. Many combustion simulations of dual fuel engines have used multi-zone model to analyze the combustion. Karim simulated autoignition and knock in dual fuel engine using a two-zone
References
[1]
G. A. Karim, “A review of combustion processes in the dual fuel engine-the gas diesel engine,” Progress in Energy and Combustion Science, vol. 6, no. 3, pp. 277–285, 1980.
[2]
G. A. Karim, “An examination of some measures for improving the performance of gas fuelled diesel engines at light load,” in Proceedings of the SAE International Fuels & Lubricants Meeting & Exposition, no. 912366, October 1991.
[3]
Z. Liu and G. A. Karim, “An analytical examination of the pre ignition processes within homogeneous mixtures of a gaseous fuel and air in a motored engine,” in Proceedings of the SAE International Fuels & Lubricants Meeting & Exposition, no. 942039, 1994.
[4]
V. Pirouzpanah and B. O. kashani, “Prediction of major pollutants emission in direct- injection dual fuel diesel and natural gas engines,” in Proceedings of the International Congress & Exposition, no. 1999-01-0841, 1999.
[5]
G. H. Abd-Alla, H. A. Soliman, O. A. Badr, and M. F. A. Rabbo, “The effects of diluents admission and intake temperature in exhaust gas recirculation on the emissions of an indirect-injection, dual fuel engine,” in Proceedings of the International Fuels & Lubricants Meeting & Exposition, no. 2000-01-2796, 2000.
[6]
D. Hountalas and R. Papagiannakis, “Development of a simulation model for direct injection dual fuel diesel-natural gas engines,” in Proceedings of the SAE 2000 World Congress, no. 2000-01-0286, 2000.
[7]
R. G. Papagiannakis, D. T. Hountalas, and C. D. Rakopoulos, “Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine,” Energy Conversion and Management, vol. 48, no. 11, pp. 2951–2961, 2007.
[8]
P. Mtui, Pilot ignited natural gas combustion diesel engines, Ph.D. thesis, University of British Columbia, Vancouver, Canada, 1996.
[9]
J. Kusaka, Y. Daisho, T. Shimonagata, R. Kihara, and T. Saito, “Combustion and exhaust characteristics of a diesel engine dual-fuelled with natural gas,” in Proceedings of the 7th International Conference and Exhibition on Natural Gas Vehicles (IANGV '00), pp. 23–31, Yokohama, Japan, October 2000.
[10]
S. Song and P. G. Hill, “Dual-fueling of a pre-chamber Diesel engine with natural gas,” Journal of Engineering for Gas Turbines and Power, vol. 107, no. 4, pp. 914–921, 1985.
[11]
S. C. Li and F. A. Williams, “A reduced reaction mechanism for predicting knock in dual fuel engines,” in Proceedings of the SAE, no. 2000-01-0957, 2000.
[12]
J. Kusaka, K. Tsazuki, and Y. Daisho, “A numerical study on combustion and exhaust gas emissions characteristics of a dual-fuel natural gas engine using a multi-dimensional model combined with detailed kinetics,” in Proceedings of the Spring Fuels & Lubricants Meeting & Exhibition, no. 2002-01-1750, 2002.
[13]
Y. Zhang, S. C. Kong, and R. D. Reitz, “Modeling and simulation of a dual-fuel (Diesel/Natural Gas) engine with multidimensional CFD,” in Proceedings of the SAE 2003 World Congress & Exhibition, no. 2003-01-0755, 2003.
[14]
C. Liu, An experimental and analytical investigation into the combustion characteristics of HCCI and dual fuel engines with pilot injection, Ph.D. thesis, University of Calgary, Calgary, Canada, 2006.
[15]
A. Gharehghani, M. Mirsalim, A. Jazayeri, and M. Ghanbari, “Numerical simulation of a new dual fuel (Diesel-gas) D87 engine with multi-dimensional CFD model,” CIMAC Paper number 233, 2010.
[16]
T. Rente, V. I. Golovichev, and I. Denbratt, “Effect of injection parameters on auto-ignition and soot formation in Diesel sprays,” in Proceedings of the SAE International Fall Fuels & Lubricants Meeting & Exhibition, no. 2001-01-3687, 2001.
[17]
A. A. Amsden, “KIVA-3V: a block-structured KIVA program for engines with vertical or canted valves,” Tech. Rep. number LA-13313-MS, Los Alamos National Labs, Los Alamos NM, USA, 1997.
[18]
A. Gharehghani, CFD modeling of “dual fuel engine” combustion with KIVA-3V, M.S. thesis, Amirkabir University of Technology, Tehran, Iran, 2010.