全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The SS-SCR Scheme for Dynamic Spectrum Access

DOI: 10.1155/2012/851204

Full-Text   Cite this paper   Add to My Lib

Abstract:

We integrate the two models of Cognitive Radio (CR), namely, the conventional Sense-and-Scavenge (SS) Model and Symbiotic Cooperative Relaying (SCR). The resultant scheme, called SS-SCR, improves the efficiency of spectrum usage and reliability of the transmission links. SS-SCR is enabled by a suitable cross-layer optimization problem in a multihop multichannel CR network. Its performance is compared for different PU activity patterns with those schemes which consider SS and SCR separately and perform disjoint resource allocation. Simulation results depict the effectiveness of the proposed SS-SCR scheme. We also indicate the usefulness of cloud computing for a practical deployment of the scheme. 1. Introduction 1.1. Cognitive Radio/Dynamic Spectrum Access The emerging Cognitive Radio (CR) technology is an attempt to alleviate the inefficient utilization of the spectrum, created by the current Command-and-Control spectrum access policy. It temporarily allows unused portions of the spectrum (spectrum holes or white-spaces), owned by the licensed users, known as primary users (PUs), to be accessed by unlicensed users, known as secondary users (SUs), without causing intrusive interference to the former’s communication [1]. This is the Sense-and-Scavenge (SS) Model of conventional CR. A CR node is characterized by an adaptive, multi-dimensionally aware, autonomous radio system empowered by advanced intelligent functionality, which interacts with its operating environment and learns from its experiences to reason, plan, and decide future actions to meet various needs [2]. In the SS model of CR, the temporal PU activity patterns have a significant influence on the opportunities for the SUs. The source traffic for the PU alternates between ON (busy) and OFF (idle) periods. The ON/OFF activity is characterized by suitable statistical models, for predictive estimation of the patterns. Exponential [3–6] and log-normal [3–5] distributions are popularly used in the literature to model the ON (and OFF) times of the PU activity. Measurements have also revealed that successive ON and OFF periods are independent, though in some cases long-term correlations exist [4]. 1.2. Symbiotic Cooperative Relaying An interesting paradigm that has surfaced in the research surrounding CR is a symbiotic architecture, which improves the efficiency of spectrum usage and reliability of the transmission links [7–12]. According to this model, which we refer to as Symbiotic Cooperative Relaying (SCR), the PU seeks to enhance its own communication by leveraging other users in its vicinity,

References

[1]  S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, 2005.
[2]  H. Zhang, “Cognitive Radio Networking for Green Communications and Green Spectrum,” http://www.comnets.org/keynote.html.
[3]  K. W. Sung, S. L. Kim, and J. Zander, “Temporal spectrum sharing based on primary user activity prediction,” IEEE Transactions on Wireless Communications, vol. 9, no. 12, pp. 3848–3855, 2010.
[4]  J. Riihij?rvi, J. Nasreddine, and P. M?h?nen, “Impact of primary user activity patterns on spatial spectrum reuse opportunities,” in Proceedings of the European Wireless Conference (EW '10), pp. 962–968, ita, April 2010.
[5]  M. Wellens, J. Riihij?rvi, and P. M?h?nen, “Empirical time and frequency domain models of spectrum use,” Physical Communication, vol. 2, no. 1-2, pp. 10–32, 2009.
[6]  F. Bouali, O. Sallent, J. Pérez-Romero, and R. Agustí, “Strengthening radio environment maps with primary-user statistical patterns for enhancing cognitive radio operation,” in Proceedings of the 6th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM '11), pp. 256–260, 2011.
[7]  O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Cooperative cognitive radio,” in Cooperative Wireless Communications, Y. Zhang, H. Chen, and M. Guizani, Eds., pp. 209–230, Auerbach, CRC Press, 2009.
[8]  O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and R. Pickholtz, “Spectrum leasing to cooperating secondary ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 203–213, 2008.
[9]  J. Zhang and Q. Zhang, “Stackelberg game for utility-based cooperative cognitive radio networks,” in Proceedings of the 10th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '09), pp. 23–31, May 2009.
[10]  P. Xue, P. Gong, N. Cao, and D. K. Kim, “Symbiotic Architecture for the cognitive radio networks with amplify-and-forward relaying cooperation,” in Proceedings of the 18th Joint Conference on Communications and Information (JCCI '09), pp. 49–54, Jeju, Korea, 2009.
[11]  P. Gong, J. H. Park, J. M. Yoo, B. S. Yu, and D. K. Kim, “Throughput maximization with multiuser non-selfish cognitive relaying in CR networks,” in Proceedings of the 4th International Symposium on Wireless and Pervasive Computing (ISWPC '09), February 2009.
[12]  T. Nadkar, V. Thumar, U. B. Desai, and S. N. Merchant, “Symbiotic cooperative relaying in cognitive radio networks with time and frequency incentive,” Springer Telecommunications System Journal.
[13]  T. Nadkar, V. Thumar, G. Shenoy, A. Mehta, U. B. Desai, and S. N. Merchant, “A cross-layer framework for symbiotic relaying in cognitive radio networks,” in Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN '11), pp. 498–509, deu, May 2011.
[14]  T. Nadkar, V. Thumar, G. Shenoy, U. B. Desai, and S. N. Merchant, “Cognitive relaying with frequency incentive,” in Proceedings of the 54th Annual IEEE Global Telecommunications Conference (GLOBECOM '11), 2011.
[15]  T. Nadkar, V. Thumar, G. Shenoy, U. B. Desai, and S. N. Merchant, “Cognitive relaying with time incentive: protocol design for multiple primary users,” in Proceedings of the IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '11), pp. 577–582, 2011.
[16]  V. Thumar, T. Nadkar, G. Shenoy, U. B. Desai, and S. N. Merchant, “Cognitive relaying with time incentive: multiple primary users,” in Proceedings of the IEEE 74th Vehicular Technology Conference (VTC '11), 2011.
[17]  IEEE 802.16 WiMax, http://www.ieee802.org/16/.
[18]  IEEE 802.22 WRAN, http://www.ieee802.org/22/.
[19]  I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006.
[20]  Y. Shi and Y. T. Hou, “A distributed optimization algorithm for multi-hop cognitive radio networks,” in Proceedings of the 27th IEEE Communications Society Conference on Computer Communications (INFOCOM '08), pp. 1966–1974, April 2008.
[21]  J. Zhang, Z. Zhang, H. Luo, and A. Huang, “A column generation approach for spectrum allocation in cognitive wireless mesh network,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '08), pp. 3091–3095, December 2008.
[22]  Y. Zeng, Y. C. Liang, A. T. Hoang, and R. Zhang, “A review on spectrumsensing for cognitive radio: challenges and solutions,” Eurasip Journal on Advances in Signal Processing, vol. 2010, Article ID 381465, 2010.
[23]  P. Dimitri Bertsekas, Network Optimization—Continuous and Discrete Models, Athena Scientific, Belmont, Mass, USA, 1998.
[24]  T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscie, New York, NY, USA, 2nd edition, 2006.
[25]  F. Ge, H. Lin, A. Khajeh et al., “Cognitive radio rides on the cloud,” in Proceedings of the IEEE Military Communications Conference (MILCOM '10), pp. 1448–1453, November 2010.
[26]  C. H. Ko, D. H. Huang, and S. H. Wu, “Cooperative spectrum sensing in TV white spaces: when cognitive radio meets cloud,” in Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS '11), pp. 672–677, April 2011.
[27]  H. Harada, H. Murakami, K. Ishizu et al., “A software defined cognitive radio system cognitive wireless clouds,” in Proceedings of the 50th Annual IEEE Global Telecommunications Conference (GLOBECOM '07), pp. 294–299, November 2007.
[28]  “LINGO: User’s guide,” LINDO Systems Inc., 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133