全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CsmA Protein is Associated with BChl a in the Baseplate Subantenna of Chlorosomes of the Photosynthetic Green Filamentous Bacterium Oscillochloris trichoides belonging to the Family Oscillochloridaceae

DOI: 10.1155/2011/860382

Full-Text   Cite this paper   Add to My Lib

Abstract:

The baseplate subantenna in chlorosomes of green anoxygenic photosynthetic bacteria, belonging to the families Chloroflexaceae and Chlorobiaceae, is known to represent a complex of bacteriochlorophyll (BChl) a with the ~6 kDa CsmA proteins. Earlier, we showed the existence of a similar BChl a subantenna in chlorosomes of the photosynthetic green bacterium Oscillochloris trichoides, member of Oscillochloridaceae, the third family of green photosynthetic bacteria. However, this BChl a subantenna was not visually identified in absorption spectra of isolated Osc. trichoides chlorosomes in contrast to those of Chloroflexaceae and Chlorobiaceae. In this work, using room and low-temperature absorbance and fluorescence spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of alkaline-treated and untreated chlorosomes of Osc. trichoides, we showed that the baseplate BChl a subantenna does exist in Oscillochloridaceae chlorosomes as a complex of BChl a with the 5.7 kDa CsmA protein. The present results support the idea that the baseplate subantenna, representing a complex of BChl a with a ~6 kDa CsmA protein, is a universal interface between the BChl c subantenna of chlorosomes and the nearest light-harvesting BChl a subantenna in all three known families of green anoxygenic photosynthetic bacteria. 1. Introduction Green anoxygenic bacteria comprise three phylogenetically unrelated families of photosynthetic bacteria: green sulfur bacteria (family Chlorobiaceae) and green filamentous bacteria (families Chloroflexaceae and Oscillochloridaceae) [1–3]. In 2000, the genus Oscillochloris was excluded from the family Chloroflexaceae, and a new family Oscillochloridaceae was proposed based on phylogenetic data and unique physiological, biochemical, and chemotaxonomical properties [3]. The photosynthetic apparatus of green anoxygenic bacteria has a particular molecular organization and contains chlorosomes, unique extramembrane light-harvesting antennae structures [4, 5]. The group of chlorosome-containing bacteria was enlarged by the recently discovered new phototrophic chlorosome-containing organism Candidatus Chloracidobacterium thermophilum from the phylum Acidobacteria [6], and it is a surprising fact. Chlorosomes are ellipsoid oblong bodies of about 70–260?nm long, 30–100?nm wide, and 10–30?nm thick (depending on the species) attached to the inner surface of the cytoplasmic membrane. They are enveloped by a protein-lipid monolayer of 2-3?nm width [7]. The bulk of light-harvesting pigments (including various types of

References

[1]  B. K. Pierson and R. W. Castenholz, “The family Chloroflexaceae,” in The Prokaryotes, A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer, Eds., pp. 3754–3774, Springer, Heidelberg, Germany, 2nd edition, 1992.
[2]  H. G. Trüper and N. Pfennig, “The family Chloroflexaceae,” in The Prokaryotes, A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer, Eds., pp. 3583–3592, Springer, New York, NY, USA, 2nd edition, 1992.
[3]  O. I. Keppen, T. P. Tourova, B. B. Kuznetsov, R. N. Ivanovsky, and V. M. Gorlenko, “Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates,” International Journal of Systematic and Evolutionary Microbiology, vol. 50, no. 4, pp. 1529–1537, 2000.
[4]  R. E. Blankenship and K. Matsuura, “Antenna complexes from green photosynthetic bacteria,” in Light-Harvesting Antennas in Photosynthesis, B. R. Green and W. W. Parson, Eds., pp. 195–217, Kluwer Academic Publishers, Dordrecht, 2003.
[5]  J. M. Olson, “Chlorophyll organization and function in green photosynthetic bacteria,” Photochemistry and Photobiology, vol. 67, no. 1, pp. 61–75, 1998.
[6]  D. A. Bryant, A. M. G. Garcia Costas, J. A. Maresca et al., “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science, vol. 317, no. 5837, pp. 523–526, 2007.
[7]  J. Oelze and J. R. Golecki, “Membranes and chlorosomes of green bacteria: structure, composition and development,” in Anoxygenic Photosynthetic Bacteria, R. E. Blankenship, M. T. Madigan, and C. E. Bauer, Eds., Kluwer Academic Publishers, Dordrecht, 1995.
[8]  A. A. Krasnovsky and M. I. Bystrova, “Self-assembly of chlorophyll aggregated structures,” BioSystems, vol. 12, no. 3-4, pp. 181–194, 1980.
[9]  K. Matsuura, M. Hirota, K. Shimada, and M. Mimuro, “Spectral forms and orientation of bacteriochlorophylls c and a in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus,” Photochemistry and Photobiology, vol. 57, no. 1, pp. 92–97, 1993.
[10]  L. A. Staehelin, J. R. Golecki, R. C. Fuller, and G. Drews, “Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus,” Archives of Microbiology, vol. 119, no. 3, pp. 269–277, 1978.
[11]  L. A. Staehelin, J. R. Golecki, and G. Drews, “Supramolecular organization of chlorosomes (Chlorobium Vesicles) and of their membrane attachment sites in Chlorobium limicola,” Biochimica et Biophysica Acta, vol. 589, no. 1, pp. 30–45, 1980.
[12]  M. F. Hohmann-Marriott, R. E. Blankenship, and R. W. Roberson, “The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy,” Photosynthesis Research, vol. 86, no. 1-2, pp. 145–154, 2005.
[13]  Y. Saga and H. Tamiaki, “Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria,” Journal of Bioscience and Bioengineering, vol. 102, no. 2, pp. 118–123, 2006.
[14]  J. P?en?ik, T. P. Ikonen, P. Laurinm?ki et al., “Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria,” Biophysical Journal, vol. 87, no. 2, pp. 1165–1172, 2004.
[15]  J. P?en?ik, J. B. Arellano, T. P. Ikonen et al., “Internal structure of chlorosomes from brown-colored Chlorobium species and the role of carotenoids in their assembly,” Biophysical Journal, vol. 91, no. 4, pp. 1433–1440, 2006.
[16]  T. P. Ikonen, H. Li, J. P?en?ik et al., “X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes,” Biophysical Journal, vol. 93, no. 2, pp. 620–628, 2007.
[17]  S. Ganapathy, G. T. Oostergetel, P. K. Wawrzyniak et al., “Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 21, pp. 8525–8530, 2009.
[18]  P. D. Gerola and J. M. Olson, “A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria,” Biochimica et Biophysica Acta, vol. 848, no. 1, pp. 69–76, 1986.
[19]  N-U Frigaard, H. Li, A. G. M. Chew, J. A. Maresca, and D. A. Bryant, “Chlorobium tepidum: insights into the physiology and biochemistry of green sulfur bacteria from the complete genome sequence,” Photosynthesis Research, vol. 78, no. 2, pp. 93–117, 2003.
[20]  J. P?en?ik, A. M. Collins, L. Liljeroos et al., “Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus,” Journal of Bacteriology, vol. 191, no. 21, pp. 6701–6708, 2009.
[21]  G. A. Montaňo, H. M. Wu, S. Lin, D. C. Brune, and R. E. Blankenship, “Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus,” Biochemistry, vol. 42, no. 34, pp. 10246–10251, 2003.
[22]  R. J. van Dorssen, H. Vasmel, and J. Amesz, “Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus II. The chlorosome,” Photosynthesis Research, vol. 9, no. 1-2, pp. 33–45, 1986.
[23]  D. E. Tronrud, J. Wen, L. Gay, and R. E. Blankenship, “The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria,” Photosynthesis Research, vol. 100, no. 2, pp. 79–87, 2009.
[24]  R. G. Feick and R. C. Fuller, “Topography of the photosynthetic apparatus of Chloroflexus aurantiacus,” Biochemistry, vol. 23, no. 16, pp. 3693–3700, 1984.
[25]  G. Niedermeier, J. A. Shiozawa, F. Lottespeich, and R. G. Feick, “The primary structure of two chlorosome proteins from Chloroflexus aurantiacus,” FEBS Letters, vol. 342, no. 1, pp. 61–65, 1994.
[26]  Y. Sakuragi, N-U Frigaard, K. Shimada, and K. Matsuura, “Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus,” Biochimica et Biophysica Acta, vol. 1413, no. 3, pp. 172–180, 1999.
[27]  E. V. Vassilieva, V. L. Stirewalt, C. U. Jakobs et al., “Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX,” Biochemistry, vol. 41, no. 13, pp. 4358–4370, 2002.
[28]  H. Li, N-U Frigaard, and D. A. Bryant, “Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum,” Biochemistry, vol. 45, no. 30, pp. 9095–9103, 2006.
[29]  M. ?. Pedersen, J. Underhaug, J. Dittmer, M. Miller, and N. C. Nielsen, “The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum,” FEBS Letters, vol. 582, no. 19, pp. 2869–2874, 2008.
[30]  N-U Frigaard, E. V. Vassilieva, H. Li, et al., “The remarkable chlorosome,” in Proceedings of the 12th International Congress on Photosynthesis (PS '01), pp. S1–S3, CSIRO, Melbourne, 2001.
[31]  E. V. Vassilieva, J. G. Ormerod, and D. A. Bryant, “Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme,” Photosynthesis Research, vol. 71, no. 1-2, pp. 69–81, 2002.
[32]  N-U Frigaard, H. Li, K. J. Milks, and D. A. Bryant, “Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes,” Journal of Bacteriology, vol. 186, no. 3, pp. 646–653, 2004.
[33]  D. A. Bryant, E. V. Vassilieva, N-U Frigaard, and H. Li, “Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a,” Biochemistry, vol. 41, no. 48, pp. 14403–14411, 2002.
[34]  N-U Frigaard, H. Li, P. Martinsson et al., “Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum,” Photosynthesis Research, vol. 86, no. 1-2, pp. 101–111, 2005.
[35]  A. S. Taisova, O. I. Keppen, E. P. Lukashev, A. M. Arutyunyan, and Z. G. Fetisova, “Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides,” Photosynthesis Research, vol. 74, no. 1, pp. 73–85, 2002.
[36]  A. S. Taisova, O. I. Keppen, A. A. Novikov, M. G. Naumova, and Z. G. Fetisova, “Some factors controlling the biosynthesis of chlorosome antenna bacteriochlorophylls in green filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae,” Microbiology, vol. 75, no. 2, pp. 129–135, 2006.
[37]  A. S. Taisova, O. I. Keppen, and Z. G. Fetisova, “Pigment composition of the light-harvesting antenna of the green bacterium from the new family Oscillochloridaceae,” Biophysics, vol. 49, no. 6, pp. 958–962, 2004.
[38]  A. S. Taisova, E. P. Lukashev, O. I. Keppen, and Z. G. Fetisova, “Comparative study of the fluorescence characteristics of the chlorosomal antennae of the green bacteria from oscillochloridaceae and two other families,” Biophysics, vol. 50, no. 2, pp. 260–264, 2005.
[39]  A. V. Zobova, A. S. Taisova, and Z. G. Fetisova, “Search for an optimal interfacing of subantennae in superantenna of photosynthetic green bacteria from Oscillochloridaceae Family: model calculations,” Doklady Biochemistry and Biophysics, vol. 433, no. 1, pp. 148–151, 2010.
[40]  R. G. Feick, M. Fitzpatrick, and R. C. Fuller, “Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus,” Photosynthesis Research, vol. 150, no. 2, pp. 905–915, 1982.
[41]  C. A. van Walree, Y. Sakuragi, D. B. Steensgaard et al., “Effect of alkaline treatment on bacteriochlorophyll a, quinones and energy transfer in chlorosomes from Chlorobium tepidum and Chlorobium phaeobacteroides,” Photochemistry and Photobiology, vol. 69, no. 3, pp. 322–328, 1999.
[42]  H. Sch?gger and G. van Jagow, “Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa,” Analytical Biochemistry, vol. 166, no. 2, pp. 368–379, 1987.
[43]  A. M. L. van de Meene, T. L. Olson, A. M. Collins, and R. E. Blankenship, “Initial characterization of the photosynthetic apparatus of "Candidatus Chlorothrix halophila," a filamentous, anoxygenic photoautotroph,” Journal of Bacteriology, vol. 189, no. 11, pp. 4196–4203, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133