We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500?ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16. 1. Introduction tRNA is a key component for protein synthesis in the cell. tRNA delivers amino acids to the ribosome, where they are incorporated to the growing nascent polypeptide chains. The characteristic L-shaped tertiary structure of tRNA is intimately related to its function, and it has intrigued investigators for decades [1, 2]. With the first high-resolution crystal structure for tRNA [1, 2], it was suggested that the molecule may possess a flexible hinge between the D-stem and the anticodon stem (Figure 1). Figure S6 (see Figure in Supplementary Material available online at doi: 10.1155/2011/219515) shows a diagrammed version of tRNA for illustration. The interarm consists of the hinge formed between the acceptor stem and the anticodon stem (Supplementary Figure S6). Figure 1(a) schematic shows a two-dimensional layout for the RNA nucleotides that account for the acceptor stem, anticodon stem, D-stem, and T-stem. Early light scattering experiments were interpreted in terms of bending motions between the two arms of the L-shaped tRNA that were thought to facilitate functional flexibility [3]. tRNA binds to aminoacyl tRNA synthetases, elongation factors, as well as different sites on the ribosome. Figure 1: tRNA
References
[1]
J. D. Robertus, J. E. Ladner, J. T. Finch, et al., “Structure of yeast phenylalanine tRNA at 3 ? resolution,” Nature, vol. 250, no. 5467, pp. 546–551, 1974.
[2]
J. D. Robertus, J. E. Ladner, J. T. Finch et al., “Correlation between three-dimensional structure and chemical reactivity of transfer RNA,” Nucleic Acids Research, vol. 1, no. 7, pp. 927–932, 1974.
[3]
T. Olson, M. J. Fournier, K. H. Langley, and N. C. Ford, “Detection of a major conformational change in transfer ribonucleic acid by laser light scattering,” Journal of Molecular Biology, vol. 102, no. 2, pp. 193–203, 1976.
[4]
P. Dumas, J. P. Ebel, R. Giege, D. Moras, J. C. Thierry, and E. Westhof, “Crystal structure of yeast tRNA(Asp): atomic coordinates,” Biochimie, vol. 67, no. 6, pp. 597–606, 1985.
[5]
D. Moras, A. C. Dock, P. Dumas, et al., “The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA,” Journal of Biomolecular Structure and Dynamics, vol. 3, no. 3, pp. 479–493, 1985.
[6]
M. W. Friederich, F. U. Gast, E. Vacano, and P. J. Hagermant, “Determination of the angle between the anticodon and aminoacyl acceptor stems of yeast phenylalanyl tRNA in solution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4803–4807, 1995.
[7]
M. W. Friederich, E. Vacano, and P. J. Hagerman, “Global flexibility of tertiary structure in RNA: yeast tRNA as a model system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3572–3577, 1998.
[8]
E. Vacano and P. J. Hagerman, “Analysis of birefringence decay profiles for nucleic acid helices possessing bends: the τ-ratio approach,” Biophysical Journal, vol. 73, no. 1, pp. 306–317, 1997.
[9]
M. M. Yusupov, G. Yusupova, A. Baucom et al., “Crystal structure of the ribosome at 5.5 ? resolution,” Science, vol. 292, no. 5518, pp. 883–896, 2001.
[10]
J. C. Schuette, F. V. Murphy, A. C. Kelley et al., “GTPase activation of elongation factor EF-Tu by the ribosome during decoding,” The EMBO Journal, vol. 28, no. 6, pp. 755–765, 2009.
[11]
H. Stark, M. V. Rodnina, H. J. Wieden, F. Zemlin, W. Wintermeyer, and M. van Heel, “Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex,” Nature Structural Biology, vol. 9, no. 11, pp. 849–854, 2002.
[12]
M. Valle, R. Gillet, S. Kaur, A. Henne, V. Ramakrishnan, and J. Frank, “Visualizing tmRNA entry into a stalled ribosome,” Science, vol. 300, no. 5616, pp. 127–130, 2003.
[13]
M. Valle, A. Zavialov, W. Li et al., “Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy,” Nature Structural Biology, vol. 10, no. 11, pp. 899–906, 2003.
[14]
M. Valle, A. Zavialov, J. Sengupta, U. Rawat, M. Ehrenberg, and J. Frank, “Locking and unlocking of ribosomal motions,” Cell, vol. 114, no. 1, pp. 123–134, 2003.
[15]
E. Villa, J. Sengupta, L. G. Trabuco et al., “Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1063–1068, 2009.
[16]
S. C. Harvey and J. A. McCammon, “Intramolecular flexibility in phenylalanine transfer RNA,” Nature, vol. 294, no. 5838, pp. 286–287, 1981.
[17]
S. C. Harvey, M. Prabhakaran, B. Mao, and J. A. McCammon, “Phenylalanine transfer RNA: molecular dynamics simulation,” Science, vol. 223, no. 4641, pp. 1189–1191, 1984.
[18]
M. Prabhakaran, S. C. Harvey, B. Mao, and J. A. McCammon, “Molecular dynamics of phenylalanine transfer RNA,” Journal of Biomolecular Structure and Dynamics, vol. 1, no. 2, pp. 357–369, 1983.
[19]
P. Auffinger and E. Westhof, “Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes,” Journal of Molecular Biology, vol. 292, no. 3, pp. 467–483, 1999.
[20]
K. Y. Sanbonmatsu, S. Joseph, and C. S. Tung, “Simulating movement of tRNA into the ribosome during decoding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 15854–15859, 2005.
[21]
K. Y. Sanbonmatsu and C. S. Tung, “High performance computing in biology: Multimillion atom simulations of nanoscale systems,” Journal of Structural Biology, vol. 157, no. 3, pp. 470–480, 2006.
[22]
M. Nina and T. Simonson, “Molecular dynamics of the tRNA acceptor stem: comparison between continuum reaction field and particle-mesh Ewald electrostatic treatments,” Journal of Physical Chemistry B, vol. 106, no. 14, pp. 3696–3705, 2002.
[23]
P. Auffinger, L. Bielecki, and E. Westhof, “Symmetric K and Mg ion-binding sites in the 5 S rRNA loop e inferred from molecular dynamics simulations,” Journal of Molecular Biology, vol. 335, no. 2, pp. 555–571, 2004.
[24]
P. Auffinger, L. Bielecki, and E. Westhof, “The Mg binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations,” Chemistry and Biology, vol. 10, no. 6, pp. 551–561, 2003.
[25]
V. Cojocaru, R. Klement, and T. M. Jovin, “Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif,” Nucleic Acids Research, vol. 33, no. 10, pp. 3435–3446, 2005.
[26]
W. Li, B. Ma, and B. A. Shapiro, “Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations,” Nucleic Acids Research, vol. 31, no. 2, pp. 629–638, 2003.
[27]
K. Y. Sanbonmatsu and S. Joseph, “Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs,” Journal of Molecular Biology, vol. 328, no. 1, pp. 33–47, 2003.
[28]
K. Réblová, N. ?pa?ková, R. ?tefl et al., “Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E,” Biophysical Journal, vol. 84, no. 6, pp. 3564–3582, 2003.
[29]
J. Sarzynska, T. Kulinski, and L. Nilsson, “Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge,” Biophysical Journal, vol. 79, no. 3, pp. 1213–1227, 2000.
[30]
N. ?pa?ková and J. ?poner, “Molecular dynamics simulations of sarcin-ricin rRNA motif,” Nucleic Acids Research, vol. 34, no. 2, pp. 697–708, 2006.
[31]
K. Réblová, F. Lanka?, F. Rázga, M. V. Krasovska, J. Ko?a, and J. ?poner, “Structure, dynamics, and elasticity of free 16S rRNA helix 44 studied by molecular dynamics simulations,” Biopolymers, vol. 82, no. 5, pp. 504–520, 2006.
[32]
A. C. Vaiana and K. Y. Sanbonmatsu, “Stochastic gating and drug-ribosome interactions,” Journal of Molecular Biology, vol. 386, no. 3, pp. 648–661, 2009.
[33]
H. Shi and P. B. Moore, “The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited,” RNA, vol. 6, pp. 1091–1105, 2000.
[34]
T. R. Caulfield and S. C. Harvey, “Conformational fitting of atomic models to cryogenic-electron microscopy maps using Maxwell’s demon molecular dynamics,” Biophysical Journal, pp. 368A–368A, 2007.
[35]
B. R. Brooks, R. E. B. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no. 2, pp. 187–217, 1983.
[36]
W. D. Cornell, P. Cieplak, C. I. Bayly et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5179–5197, 1995.
[37]
A. Pérez, I. Marchán, D. Svozil et al., “Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers,” Biophysical Journal, vol. 92, no. 11, pp. 3817–3829, 2007.
[38]
L. Kalé, R. Skeel, M. Bhandarkar et al., “NAMD2: greater scalability for parallel molecular dynamics,” Journal of Computational Physics, vol. 151, no. 1, pp. 283–312, 1999.
[39]
D. A. Pearlman, D. A. Case, J. W. Caldwell et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules,” Computer Physics Communications, vol. 91, no. 1–3, pp. 1–41, 1995.
[40]
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” The Journal of Chemical Physics, vol. 79, no. 2, pp. 926–935, 1983.
[41]
R. Aduri, B. T. Psciuk, P. Saro, H. Taniga, H. B. Schlegel, and J. SantaLucia Jr., “AMBER force field parameters for the naturally occurring modified nucleosides in RNA,” Journal of Chemical Theory and Computation, vol. 3, no. 4, pp. 1464–1475, 2007.
[42]
W. S. Ross and C. C. Hardin, “Ion-induced stabilization of the G-DNA quadruplex: free energy perturbation studies,” Journal of the American Chemical Society, vol. 116, no. 14, pp. 6070–6080, 1994.
[43]
T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems,” The Journal of Chemical Physics, vol. 98, no. 12, pp. 10089–10092, 1993.
[44]
J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes,” Journal of Computational Physics, vol. 23, no. 3, pp. 327–341, 1977.
[45]
S. C. Harvey, R. K. Tan, and T. E. Cheatham III, “The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition,” Journal of Computational Chemistry, vol. 19, no. 7, pp. 726–740, 1998.
[46]
J. Frank, M. Radermacher, P. Penczek et al., “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” Journal of Structural Biology, vol. 116, no. 1, pp. 190–199, 1996.
[47]
F. Tama, O. Miyashita, and C. L. Brooks III, “Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis,” Journal of Molecular Biology, vol. 337, no. 4, pp. 985–999, 2004.
[48]
F. Tama, O. Miyashita, and C. L. Brooks III, “Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM,” Journal of Structural Biology, vol. 147, no. 3, pp. 315–326, 2004.
[49]
M. Orzechowski and F. Tama, “Flexible fitting of high-resolution X-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations,” Biophysical Journal, vol. 95, no. 12, pp. 5692–5705, 2008.
[50]
H. M. Berman, W. K. Olson, D. L. Beveridge et al., “The nucleic acid database. A comprehensive relational database of three- dimensional structures of nucleic acids,” Biophysical Journal, vol. 63, no. 3, pp. 751–759, 1992.
[51]
P. E. Bourne, K. J. Addess, W. F. Bluhm et al., “The distribution and query systems of the RCSB Protein Data Bank,” Nucleic Acids Research, vol. 32, pp. D223–D225, 2004.
[52]
J. Frank, J. Sengupta, H. Gao et al., “The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer,” FEBS Letters, vol. 579, no. 4, pp. 959–962, 2005.
[53]
S. C. Harvey and H. A. Gabb, “Conformational transitions using molecular dynamics with minimum biasing,” Biopolymers, vol. 33, no. 8, pp. 1167–1172, 1993.
[54]
P. C. Whitford, P. Geggier, R. B. Altman, S. C. Blanchard, J. N. Onuchic, and K. Y. Sanbonmatsu, “Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways,” RNA, vol. 16, no. 6, pp. 1196–1204, 2010.
[55]
O. Namy, S. J. Moran, D. I. Stuart, R. J. C. Gilbert, and I. Brierley, “A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting,” Nature, vol. 441, no. 7090, pp. 244–247, 2006.