全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis

DOI: 10.1155/2012/936950

Full-Text   Cite this paper   Add to My Lib

Abstract:

We evaluated the effects of cadmium on phenolic composition of Erica andevalensis, an endemic protected heather that grows in mine affected soils. Plants cultivated under laboratory-controlled conditions were exposed to acute doses of cadmium to investigate the mechanisms this species possesses to survive in the presence of toxic metals in its natural habitat. Cadmium increased the total levels of phenolics and flavonoids compounds, and the total antioxidant capacity. Cinnamic acid derivatives, epicatechin, and rutin were increased in the presence of cadmium when applied in levels that did not alter the ratio of chlorophylls. Phenolic compounds play an important role in the metabolism of E. andevalensis to survive in heavy metal polluted soils. 1. Introduction Erica andevalensis Cabezudo and Rivera is an endemic species of South Western Iberian Peninsula, which only grows on soils affected by mining activity (outskirts of the mines, river banks of Tinto and Odiel Rivers) [1–3]. E. andevalensis flowers in soils and sediments highly polluted by a broad range of metals, which include cadmium [4–6]. Cadmium has no known physiological function in plants, and it is a highly toxic metal due to its reactivity with S and N atoms in amino acids [7]. It is also known to affect cellular structures and produce membrane damage, disruption of the electron transport, inhibition/activation of enzymes, and alteration of DNA [8]. Although cadmium does not belong to the Fenton-type class of metals, it is known to trigger lipid peroxidation in tissues at early exposure times, and several studies have shown the activation of antioxidative defences against cadmium toxicity [9]. Phenolic compounds have been described as electron-donating agents, and therefore they can act as antioxidants [10], acting as reducing agents, hydrogen donors, and singlet oxygen quenchers and preventing the evolution of oxidant-free radical and reactive species derived from metal catalysis by Fenton-like reactions [11, 12]. Moreover, it has been suggested that phenolics may act as biomarkers of metal exposure [13]. Previous studies detected a different phenolic composition in E. andevalensis compared with other heathers growing both in polluted and unpolluted soils [14], and, when grown under controlled conditions in the laboratory, acute exposure to cadmium-induced changes in the total antioxidant activity [15] and in the ascorbate and glutathione levels, and also the activity of the antioxidant enzymes [16]. The aim of the present study is to determine the phenolic composition of E. andevalensis in

References

[1]  B. Cabezudo and J. Rivera, “Notas taxonómicas y corológicas sobre la flora de Andalucía Occidental. 2. Erica andevalensis Cabezudo and Rivera, SP. NOR.,” Lagascalia, vol. 9, no. 1, pp. 223–226, 1980.
[2]  E. C. Nelson, D. McClintock, and D. Small, “The natural habitat of Erica andevalensis in South-werstern Spain,” Curtis's Botanical Magazine, vol. 2, no. 1, pp. 324–330, 1985.
[3]  N. Rodríguez, R. Amils, R. Jiménez-Ballesta, L. Rufo, and V. de la Fuente, “Heavy metal content in Erica andevalensis: an endemic plant from the extreme acidic environment of Tinto River and its soils,” Arid Land Research and Management, vol. 21, no. 1, pp. 51–65, 2007.
[4]  A. Asensi, F. Bennett, R. Brooks, B. Robinson, and R. Stewart, “Copper uptake studies on Erica andevalensis, a metal-tolerant plant from southwestern Spain,” Communications in Soil Science and Plant Analysis, vol. 30, no. 11-12, pp. 1615–1624, 1999.
[5]  B. Márquez-García and F. Córdoba, “Antioxidative system in wild populations of Erica andevalensis,” Environmental and Experimental Botany, vol. 68, no. 1, pp. 58–65, 2010.
[6]  M. Soldevilla, T. Maranon, and F. Cabrera, “Heavy metal content in soil and plants from a pyrite mining area in southwest Spain,” Communications in Soil Science & Plant Analysis, vol. 23, no. 11-12, pp. 1301–1319, 1992.
[7]  S. Clemens, “Molecular mechanisms of plant metal tolerance and homeostasis,” Planta, vol. 212, no. 4, pp. 475–486, 2001.
[8]  K. Smeets, A. Cuypers, A. Lambrechts et al., “Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application,” Plant Physiology and Biochemistry, vol. 43, no. 5, pp. 437–444, 2005.
[9]  M. W. Fariss, “Cadmium toxicity: unique cytoprotective properties of alpha tocopheryl succinate in hepatocytes,” Toxicology, vol. 69, no. 1, pp. 63–77, 1991.
[10]  A. Michalak, “Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress,” Polish Journal of Environmental Studies, vol. 15, no. 4, pp. 523–530, 2006.
[11]  C. Jung, V. Maeder, F. Funk, B. Frey, H. Sticher, and E. Frossard, “Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification,” Plant and Soil, vol. 252, no. 2, pp. 301–312, 2003.
[12]  G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochimica et Biophysica Acta, vol. 1472, no. 1-2, pp. 142–152, 1999.
[13]  D. Bia?ońska, A. M. Zobel, M. Kura?, T. Tykarska, and K. Sawicka-Kapusta, “Phenolic compounds and cell structure in bilberry leaves affected by emissions from a Zn-Pb smelter,” Water, Air, and Soil Pollution, vol. 181, no. 1–4, pp. 123–133, 2007.
[14]  B. Márquez-García, M. A. Fernández, and F. Córdoba, “Phenolics composition in Erica sp. differentially exposed to metal pollution in the Iberian southwestern Pyritic Belt,” Bioresource Technology, vol. 100, no. 1, pp. 446–451, 2009.
[15]  B. Márquez-García, N. Horemans, A. Cuypers, Y. Guisez, and F. Córdoba, “Antioxidants in Erica andevalensis: a comparative study between wild plants and cadmium-exposed plants under controlled conditions,” Plant Physiology and Biochemistry, vol. 49, no. 1, pp. 110–115, 2011.
[16]  B. Márquez-García, N. Horemans, R. Torronteras, and F. Córdoba, “Glutathione depletion in healthy cadmium-exposed Erica andevalensis,” Environmental and Experimental Botany, vol. 75, no. 1, pp. 159–166, 2012.
[17]  A. Aparicio, “Seed germination of Erica andevalensis Cabezudo and Rivera (Ericaceae), an endangered edaphic endemic in southwestern Spain,” Seed Science and Technology, vol. 23, pp. 705–713, 1995.
[18]  R. J. Grube?i?, J. Vukovi?, D. Kremer, and S. Vladimir-Kne?evi?, “Spectrophotometric method for polyphenols analysis: prevalidation and application on Plantago L. species,” Journal of Pharmaceutical and Biomedical Analysis, vol. 39, no. 3-4, pp. 837–842, 2005.
[19]  J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chemistry, vol. 64, no. 4, pp. 555–559, 1999.
[20]  W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995.
[21]  L. P. Leong and G. Shui, “An investigation of antioxidant capacity of fruits in Singapore markets,” Food Chemistry, vol. 76, no. 1, pp. 69–75, 2002.
[22]  S. P. Wong, L. P. Leong, and J. H. W. Koh, “Antioxidant activities of aqueous extracts of selected plants,” Food Chemistry, vol. 99, no. 4, pp. 775–783, 2006.
[23]  A. Ardestani and R. Yazdanparast, “Antioxidant and free radical scavenging potential of Achillea santolina extracts,” Food Chemistry, vol. 104, no. 1, pp. 21–29, 2007.
[24]  P. Prieto, M. Pineda, and M. Aguilar, “Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E,” Analytical Biochemistry, vol. 269, no. 2, pp. 337–341, 1999.
[25]  H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods in Enzymology, vol. 148, pp. 350–382, 1987.
[26]  K. J. Dietz, M. Baier, and U. Kramer, “Impact of heavy metals in photosynthesis,” in Heavy Metals Stress in Plants: From Molecules to Ecosystem, M. N. V. Prasad and J. Hagemeyer, Eds., pp. 73–97, Springer, Berlin, Germany, 1999.
[27]  B. Mysliwa-Kurdziel, M. N. V. Prasad, and K. Strzalka, “Photosynthesis in heavy metal stressed plants,” in Heavy Metal Stress in Plants: From Biomolecules to Ecosystems, M. N. V. Prasad, Ed., pp. 146–181, Springer, Berlin, Germany, 2004.
[28]  P. Das, S. Samantaray, and G. R. Rout, “Studies on cadmium toxicity in plants: a review,” Environmental Pollution, vol. 98, no. 1, pp. 29–36, 1997.
[29]  Y. Sakihama, M. F. Cohen, S. C. Grace, and H. Yamasaki, “Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants,” Toxicology, vol. 177, no. 1, pp. 67–80, 2002.
[30]  D. M. Domínguez, F. C. García, A. C. Raya, and R. T. Santiago, “Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora,” Physiologia Plantarum, vol. 139, no. 3, pp. 289–302, 2010.
[31]  J. Kovacik, B. Klejdus, J. Hedbavny, F. Stork, and M. Backor, “Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria camomilla plants,” Plant and Soil, vol. 320, no. 1-2, pp. 231–242, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133