|
- 2020
基于多级神经网络模型的厌氧氨氧化系统参数预测Keywords: 人工神经网络,模拟预测,改进粒子群算法,厌氧氨氧化 Abstract: 厌氧氨氧化菌生长条件复杂、影响因素多,其工艺系统运行控制复杂,为解决上述问题,研究构建了1个多级神经网络预测模型,以提高SBBR单级自养脱氮厌氧氨氧化系统出水总氮去除率预测精度,并确定了系统工程应用的关键控制参数。一级神经网络模型通过灰色关联度分析,对影响出水总氮去除率的关键性指标进行预测;二级神经网络模型基于一级模型增加数据维度,并通过改进粒子群算法优化网络、借鉴遗传算法变异的思想扩大搜索范围,提高了出水总氮去除率的预测精度。多级神经网络模型预测结果表明,其总氮去除率平均相对误差为0.54%,相对误差为5.76%,均方根误差为1.132 1,预测数据基本上与实际值相符;与其他预测模型相比较,该模型表现出较优的预测精度。进一步分析发现,通过控制工艺系统的曝气量调节出水亚氮浓度,是保证工艺反应的稳定和实现厌氧氨氧化工艺工程应用的有效控制方式
|