|
- 2019
基于特征指标降维及熵权法的日负荷曲线聚类方法Keywords: 特征指标降维,熵权法,加权模糊C均值算法,负荷曲线聚类,dimensionality reduction of feature index, entropy weight method, feature-weighted fuzzy C-means(FW-FCM)algorithm, load curve clustering Abstract: 日负荷曲线聚类是负荷建模背景下分析负荷特性的基础。针对现有聚类方法在聚类质量、聚类效率等方面的不足,综合运用模糊C均值及熵权法原理提出一种基于特征指标降维及熵权法的日负荷曲线聚类方法。首先提取日负荷率、日峰谷差率、日最大利用时间等7类降维特征指标替代各采样点负荷数据作为聚类输入;其次,引入熵权法自适应配置各特征指标的权重系数;最后,采用特征加权的模糊C均值聚类算法对用电日负荷曲线进行聚类。采用所提方法对某地区日负荷曲线进行聚类分析,算例结果表明该方法在运行效率、鲁棒性、聚类质量等方面具有一定的优越性,聚类结果能真实有效地反映负荷的实际用电特性
|