With the advent of the industrial revolution, heavy metal contamination has become an ever increasing concern. Thus, it is of major importance to understand the extent of the toxicity in plants and animals and the consequences from the ingestion of contaminated food. Hg is easily modified into several oxidation states, and it can be spread in many ecosystems. Due to the recurrence of Hg pollution and due to the lack of knowledge about the effects of this heavy metal in plants, the aim of the present text is to provide a comprehensive review of the literature regarding Hg phytotoxicity. 1. Heavy Metal Pollution: Environmental Issue Agriculture had a major impact in humans, being the major force behind the passage from a hunter-gatherer/forager society to a sedentary one, becoming a crucial tool for human sustainability and the development of economics worldwide. However, the passage to a sedentary and ever developing society was accompanied by a drastic transformation of the environment and the inherent exposure to new risks caused directly or indirectly by those transformations [1]. One of the many new risks that might have affected those early societies was the continuous exposure to pollutants, namely, heavy metals. The first cases of human exposure to heavy metals, beside the naturally occurring phenomena from Earth processes (e.g., volcanoes and rock constituents), were soon reinforced by the inadvertently discharge of these elements to the environment by human activities (e.g., from ore mining and smelting) [2, 3]. Since then, and with the advent of the industrial revolution, heavy metal contamination has become an ever increasing concern [4, 5]. Moreover, due to their stability and as they cannot be degraded, heavy metals tend to accumulate easily spread in a wide variety of ecosystems [6]. For most of the heavy metals, contamination arises from industrial applications, mining, smelters, combustion of fuel, and byproducts. From these sources, contaminants can be present in the ecosystem as airborne particles, wastewaters, and sludge [7], polluting not only sites near the source but also locations thousands of kilometers apart. Within the many occurrences of ecosystems’ pollution provoked by heavy metals, it easily comes to mind the magnitude and reach of the Minamata disaster (1950), which caught the world unaware of the damage that long exposure to heavy metals can induce in organisms. Mercury (Hg) was the main pollutant, and the subsequent associated diseases caused 2,265 casualties just from direct exposure to Hg [8]. The uncontrolled release
References
[1]
A. R. Shetty, Metal anion removal from wastewater using Chitosan in a polymer enhanced diafiltration system, Master thesis in sciences, 2006.
[2]
D. L. Sparks, “Toxic metals in the environment: the role of surfaces,” Elements, vol. 1, no. 4, pp. 193–197, 2005.
[3]
J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” International Journal of Physical Sciences, vol. 2, pp. 112–118, 2007.
[4]
S. C. Dunagan, M. S. Gilmore, and J. C. Varekamp, “Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.),” Environmental Pollution, vol. 148, no. 1, pp. 301–311, 2007.
[5]
L. Zhang and M. H. Wong, “Environmental mercury contamination in China: sources and impacts,” Environment International, vol. 33, no. 1, pp. 108–121, 2007.
[6]
V. K. Gupta, P. Singh, and N. Rahman, “Adsorption behavior of Hg(II), Pb(II), and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 398–402, 2004.
[7]
M. Farrell and D. L. Jones, “Critical evaluation of municipal solid waste composting and potential compost markets,” Bioresource Technology, vol. 100, no. 19, pp. 4301–4310, 2009.
[8]
F. Zahir, S. J. Rizwi, S. K. Haq, and R. H. Khan, “Low dose mercury toxicity and human health,” Environmental Toxicology and Pharmacology, vol. 20, no. 2, pp. 351–360, 2005.
[9]
L. Selander, P. Svan, et al., Occurrence and distribution of heavy metals in lake poopó, bolivia, Master of Science Thesis in Environmental Engineering, 2007.
[10]
W. Giger, “The Rhine red, the fish dead—the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment,” Environmental Science and Pollution Research, vol. 16, supplement 1, pp. 98–111, 2009.
[11]
J. O. Nriagu, “A silent epidemic of environmental metal poisoning?” Environmental Pollution, vol. 50, no. 1-2, pp. 139–161, 1988.
[12]
M. J. McLaughlin, D. R. Parker, and J. M. Clarke, “Metals and micronutrients—food safety issues,” Field Crops Research, vol. 60, no. 1-2, pp. 143–163, 1999.
[13]
M. Patra, N. Bhowmik, B. Bandopadhyay, and A. Sharma, “Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance,” Environmental and Experimental Botany, vol. 52, no. 3, pp. 199–223, 2004.
[14]
P. C. Nagajyoti, K. D. Lee, and T. V. M. Sreekanth, “Heavy metals, occurrence and toxicity for plants: a review,” Environmental Chemistry Letters, vol. 8, no. 3, pp. 199–216, 2010.
[15]
G. Sarret, E. Harada, Y.-E. Choi et al., “Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds,” Plant Physiology, vol. 141, no. 3, pp. 1021–1034, 2006.
[16]
A. J. M. Baker, “Accumulators and excluders strategies in the response of plants to heavy metals,” Journal of Plant Nutrition, vol. 3, pp. 643–654, 1981.
[17]
J. R. Peralta-Videa, M. L. Lopez, M. Narayan, G. Saupe, and J. Gardea-Torresdey, “The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain,” The International Journal of Biochemistry & Cell Biology, vol. 41, no. 8-9, pp. 1665–1677, 2009.
[18]
D. Beyersmann and A. Hartwig, “Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms,” Archives of Toxicology, vol. 82, no. 8, pp. 493–512, 2008.
[19]
M. Patra and A. Sharma, “Mercury toxicity in plants,” Botanical Review, vol. 66, no. 3, pp. 379–422, 2000.
[20]
E. Rodriguez, R. Azevedo, P. Fernandes, and C. Santos, “Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum,” Chemical Research in Toxicology, vol. 24, no. 7, pp. 1040–1047, 2011.
[21]
E. Rodriguez, C. Santos, R. Azevedo, J. Moutinho-Pereira, C. Correia, and M. C. Dias, “Chromium (VI) induces toxicity at different photosynthetic levels in pea,” Plant Physiology and Biochemistry, vol. 53, pp. 94–100, 2012.
[22]
D. W. Boening, “Ecological effects, transport, and fate of mercury: a general review,” Chemosphere, vol. 40, no. 12, pp. 1335–1351, 2000.
[23]
T. W. Clarkson and L. Magos, “The toxicology of mercury and its chemical compounds,” Critical Reviews in Toxicology, vol. 36, no. 8, pp. 609–662, 2006.
[24]
T. W. Clarkson, J. B. Vyas, and N. Ballatori, “Mechanisms of mercury disposition in the body,” American Journal of Industrial Medicine, vol. 50, no. 10, pp. 757–764, 2007.
[25]
D. Y. Yang, Y. W. Chen, J. M. Gunn, and N. Belzile, “Selenium and mercury in organisms: interactions and mechanisms,” Environmental Reviews, vol. 16, pp. 71–92, 2008.
[26]
S. R. Pheng, C. Auger, S. Chakrabarti, E. Massicotte, and L. Lamontagne, “Sensitivity to methylmercury-induced autoimmune disease in mice correlates with resistance to apoptosis of activated CD4+ lymphocytes,” Journal of Autoimmunity, vol. 20, no. 2, pp. 147–160, 2003.
[27]
S. Iglesia-Turi?o, A. Febrero, O. Jauregui, C. Caldelas, J. L. Araus, and J. Bort, “Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury,” Plant Physiology, vol. 142, no. 2, pp. 742–749, 2006.
[28]
J. J. Berzas Nevado, R. C. Rodríguez Martín-Doimeadios, F. J. Guzmán Bernardo et al., “Mercury in the Tapajós River basin, Brazilian Amazon: a review,” Environment International, vol. 36, no. 6, pp. 593–608, 2010.
[29]
R. K. Zalups, “Molecular interactions with mercury in the kidney,” Pharmacological Reviews, vol. 52, no. 1, pp. 113–143, 2000.
[30]
D. Cargnelutti, L. A. Tabaldi, R. M. Spanevello et al., “Mercury toxicity induces oxidative stress in growing cucumber seedlings,” Chemosphere, vol. 65, no. 6, pp. 999–1006, 2006.
[31]
M. Lenka, K. K. Panda, and B. B. Panda, “Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant—4. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India,” Archives of Environmental Contamination and Toxicology, vol. 22, no. 2, pp. 195–202, 1992.
[32]
S. P. McGrath, F. J. Zhao, and E. Lombi, “Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils,” Plant and Soil, vol. 232, no. 1-2, pp. 207–214, 2001.
[33]
R. D. Reeves and A. J. M. Baker, “Metal-accumulating plants,” in Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, I. Raskin and B. D. Ensley, Eds., pp. 193–229, John Wiley & Sons, New York, NY, USA, 2000.
[34]
V. Dushenkov, P. B. A. N. Kumar, H. Motto, and I. Raskin, “Rhizofiltration: the use of plants to remove heavy metals from aqueous streams,” Environmental Science & Technology, vol. 29, pp. 1239–1245, 1995.
[35]
P. B. A. N. Kumar, V. Dushenkov, H. Motto, and I. Raskin, “Phytoextraction: the use of plants to remove heavy metals from soils,” Environmental Science & Technology, vol. 29, pp. 1232–1238, 1995.
[36]
E. M. Suszcynsky and J. R. Shann, “Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes,” Environmental Toxicology and Chemistry, vol. 14, no. 1, pp. 61–67, 1995.
[37]
M. E. Blazka and Z. A. Shaikh, “Cadmium and mercury accumulation in rat hepatocytes: interactions with other metal ions,” Toxicology and Applied Pharmacology, vol. 113, no. 1, pp. 118–125, 1992.
[38]
A. Cavallini, L. Natali, M. Durante, and B. Maserti, “Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants,” Science of the Total Environment, vol. 243-244, pp. 119–127, 1999.
[39]
R. G. Ross and D. K. R. Stewart, “Movement and accumulation of in apple tree and soil,” Canadian Journal of Plant Science, vol. 42, pp. 280–285, 1962.
[40]
C. Ortega-Villasante, R. Rellán-álvarez, F. F. del Campo, R. O. Carpena-Ruiz, and L. E. Hernández, “Cellular damage induced by cadmium and mercury in Medicago sativa,” Journal of Experimental Botany, vol. 56, no. 418, pp. 2239–2251, 2005.
[41]
M. Israr, S. Sahi, R. Datta, and D. Sarkar, “Bioaccumulation and physiological effects of mercury in Sesbania drummondii,” Chemosphere, vol. 65, no. 4, pp. 591–598, 2006.