全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于改进DBSCAN算法的变压器不良漏抗参数辨识

Keywords: 变压器,漏抗,不良参数,相关系数,具有噪声的基于密度的聚类(DBSCAN),transformer, leakage reactance, bad data, correlation coefficient, density-based spatial clustering of application with noise(DBSCAN)

Full-Text   Cite this paper   Add to My Lib

Abstract:

PSD-BPA在中国电力系统仿真计算中被广泛应用,但由于其数据格式的特殊性,往往容易出现许多人为原因的数据错误,这给仿真计算结果的准确性与可靠性带来了极大的隐患。首先,在给出变压器不良漏抗参数辨识步骤的基础上,结合PSD-BPA潮流数据中变压器参数数据的特点,提出了考虑特征相似度的具有噪声的基于密度的聚类(DBSCAN)改进算法。其次,基于各类参数向量簇的各属性最大相似系数,计算获得各类参数向量簇的典型特征向量。然后,基于各类的典型特征向量,针对聚类结果中的噪声簇,提出了基于离群系数的可疑不良数据分布模型;在此基础上,结合分布规律,提出了基于可疑度的不良参数判别方法。最后,通过实际算例验证了所述模型与方法的有效性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133