|
- 2003
基于GN-BFGS算法的RBF神经网络短期负荷预测Keywords: 短期负荷预测, GN-BFGS算法, RBF神经网络,短期负荷预测, GN-BFGS算法, RBF神经网络 Abstract: 提出了应用混合GN(GaussNewton)-BFGS(BroydenFletcherGoldfarbShanno)法进行RBF(径向基函数)神经网络学习的算法。这种方法结合GN法与BFGS法的特点,既尽可能地利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率,因此有效地提高了学习效率。在学习过程中,利用该方法能够区分零残量和非零残量,并利用这种特点进行隐层神经元数目的自动调整,从而可以保证神经网络的学习能力和推广能力。多个实际电网的负荷预测结果表明,该方法同神经网络的其他算法相比,具有训练时间短、预测精度高的特点
|