全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploring the Membrane Mechanism of the Bioactive Peptaibol Ampullosporin A Using Lipid Monolayers and Supported Biomimetic Membranes

DOI: 10.1155/2010/179641

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ampullosporin A is an antimicrobial, neuroleptic peptaibol, the behavior of which was investigated in different membrane mimetic environments made of egg yolk L-α-phosphatidylcholine. In monolayers, the peptaibol adopted a mixed α/310-helical structure with an in-plane orientation. The binding step was followed by the peptide insertion into the lipid monolayer core. The relevance of the inner lipid leaflet nature was studied by comparing ampullosporin binding on a hybrid bilayer, in which this leaflet was a rigid alkane layer, and on supported fluid lipid bilayers. The membrane binding was examined by surface plasmon resonance spectroscopy and the effect on lipid dynamics was explored using fluorescence recovery after photobleaching. In the absence of voltage and at low concentration, ampullosporin A substantially adsorbed onto lipid surfaces and its interaction with biomimetic models was strongly modified depending on the inner leaflet structure. At high concentration, ampullosporin A addition led to the lipid bilayers disruption. 1. Introduction Living cells naturally produce diverse membranotropic peptides displaying antifungal and/or antibacterial activities. These properties have been attributed to their molecular interaction with the target cell membranes. Three basic models have been proposed for membrane interaction mechanisms leading to membrane permeabilization. The first model consists in the formation of barrel-stave pores [1], in which the pore lumen is formed by the polar side of amphipathic and helical peptide monomers assembled into a bundle. The second major mechanism that has been proposed for membranolytic, amphipathic peptides is the formation of the so-called “toroidal” transient pores [2, 3]. In this model, the peptides bind to the polar head groups of the cell membrane phospholipids (PL) and, above a critical peptide concentration, continuously bend the lipid leaflet favouring the formation of a pore lined by both the peptides and the lipid polar headgroups. The third major model is called the “carpet-like” mechanism. While the two former modes of action require the formation of a pore structure, the latter one is subsequent to the accumulation of flat-oriented peptides at the lipid bilayer surface and may lead to membrane disruption and formation of mixed lipid-peptide aggregates [4]. The peptaibiotics’ family [5, 6] comprises a large number of defense peptides, most of which share common features such as an acetylated N-terminal amino acid residue, a C-terminal amino alcohol and a high proportion of nonproteogenic residues such

References

[1]  G. Boheim, “Statistical analysis of alamethicin channels in black lipid membranes,” Journal of Membrane Biology, vol. 19, no. 3, pp. 277–303, 1974.
[2]  Z. Oren and Y. Shai, “Mode of action of linear amphipathic α-helical antimicrobial peptides,” Biopolymers, vol. 47, no. 6, pp. 451–463, 1998.
[3]  L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang, “Barrel-stave model or toroidal model? A case study on melittin pores,” Biophysical Journal, vol. 81, no. 3, pp. 1475–1485, 2001.
[4]  Y. Shai, “Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 55–70, 1999.
[5]  H. Brückner, T. Kripp, and M. Kieb, “Sequencing of new Aib-peptides by tandem mass spectrometry and automated Edman degradation,” in Peptides 1990, E. Giralt and D. Andreu, Eds., pp. 347–349, ESCOM, Leiden, The Netherlands, 1991.
[6]  H. Brückner, J. Maisch, C. Reinecke, and A. Kimonyo, “Use of α-aminoisobutyric acid and isovaline as marker amino acids for the detection of fungal polypeptide antibiotics. Screening of hypocrea,” Amino Acids, vol. 1, no. 2, pp. 251–257, 1991.
[7]  E. Benedetti, A. Bavoso, B. Di Blasio, et al., “Peptaibol antibiotics: a study on the helical structure of the 2-9 sequence of emerimicins III and IV,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 24, pp. 7951–7954, 1982.
[8]  H. Bruckner and H. Graf, “Paracelsin, a peptide antibiotic containing α-aminoisobutyric acid, isolated from Trichoderma reesei Simmons. Part A,” Experientia, vol. 39, no. 5, pp. 528–530, 1983.
[9]  T. Degenkolb, W. Gams, and H. Brückner, “Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects,” Chemistry and Biodiversity, vol. 5, no. 5, pp. 693–706, 2008.
[10]  T. Degenkolb, J. Kirschbaum, and H. Brückner, “New sequences, constituents, and producers of peptaibiotics: an updated review,” Chemistry and Biodiversity, vol. 4, no. 6, pp. 1052–1067, 2007.
[11]  L. Whitmore and B. A. Wallace, “The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols,” Nucleic Acids Research, vol. 32, pp. D593–D594, 2004.
[12]  M. Ritzau, S. Heinze, K. Dornberger et al., “Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullosporum HKI-0053 with neuroleptic activity in mice,” Journal of Antibiotics, vol. 50, no. 9, pp. 722–728, 1997.
[13]  J. Engelberth, T. Koch, F. Kühnemann, and W. Boland, “Channel-forming peptaibols are potent elicitors of plant secondary metabolism and tendril coiling,” Angewandte Chemie—International Edition, vol. 39, no. 10, pp. 1860–1862, 2000.
[14]  S. Rippa, H. Adenier, M. Derbaly, and L. Béven, “The peptaibol alamethicin induces an rRNA-cleavage-associated death in Arabidopsis thaliana,” Chemistry and Biodiversity, vol. 4, no. 6, pp. 1360–1373, 2007.
[15]  S. Rippa, M. Eid, F. Formaggio, C. Toniolo, and L. Béven, “Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana,” ChemBioChem, vol. 11, no. 14, pp. 2042–2049, 2010.
[16]  P. A. Grigoriev, M. Kronen, B. Schlegel, A. H?rtl, and U. Gr?fe, “Differences in ion-channel formation by ampullosporins B, C, D and semisynthetic desacetyltryptophanyl ampullosporin A,” Bioelectrochemistry, vol. 57, no. 2, pp. 119–121, 2002.
[17]  T. V. Ovchinnikova, N. G. Levitskaya, O. G. Voskresenskaya, et al., “Neuroleptic properties of the ion-channel-forming peptaibol zervamycin: locomotor activity and behavioral effects,” in Peptaibiotics: Fungal Peptides Containing α-Dialkyl α-Amino Acids, C. Toniolo and H. Brückner, Eds., pp. 605–618, Wiley-Vch, Zürich, Switzerland, 2009.
[18]  B. Bechinger, “The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 157–183, 1999.
[19]  F. Y. Chen, M. T. Lee, and H. W. Huang, “Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation,” Biophysical Journal, vol. 84, no. 6, pp. 3751–3758, 2003.
[20]  H. Duclohier and H. Wróblewski, “Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues,” Journal of Membrane Biology, vol. 184, no. 1, pp. 1–12, 2001.
[21]  H. W. Huang and Y. Wu, “Lipid-alamethicin interactions influence alamethicin orientation,” Biophysical Journal, vol. 60, no. 5, pp. 1079–1087, 1991.
[22]  T. Kikukawa and T. Araiso, “Changes in lipid mobility associated with alamethicin incorporation into membranes,” Archives of Biochemistry and Biophysics, vol. 405, no. 2, pp. 214–222, 2002.
[23]  S. Ladha, A. R. Mackie, L. J. Harvey et al., “Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations,” Biophysical Journal, vol. 71, no. 3, pp. 1364–1373, 1996.
[24]  C. Li and T. Salditt, “Structure of magainin and alamethicin in model membranes studied by X-ray reflectivity,” Biophysical Journal, vol. 91, no. 9, pp. 3285–3300, 2006.
[25]  Y. Wu, H. W. Huang, and G. A. Olah, “Method of oriented circular dichroism,” Biophysical Journal, vol. 57, no. 4, pp. 797–806, 1990.
[26]  K. He, S. J. Ludtke, W. T. Heller, and H. W. Huang, “Mechanism of alamethicin insertion into lipid bilayers,” Biophysical Journal, vol. 71, no. 5, pp. 2669–2679, 1996.
[27]  H. W. Huang, “Molecular mechanism of antimicrobial peptides: the origin of cooperativity,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1292–1302, 2006.
[28]  M. S. P. Sansom, I. D. Kerr, and I. R. Mellor, “Ion channels formed by amphipathic helical peptides,” European Biophysics Journal, vol. 20, no. 4, pp. 229–240, 1991.
[29]  N. Vedovato, C. Baldini, C. Toniolo, and G. Rispoli, “Pore-forming properties of alamethicin F50/5 inserted in a biological membrane,” Chemistry and Biodiversity, vol. 4, no. 6, pp. 1338–1346, 2007.
[30]  J. Engelberth, T. Koch, G. Schüler, N. Bachmann, J. Rechtenbach, and W. Boland, “Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in Lima bean,” Plant Physiology, vol. 125, no. 1, pp. 369–377, 2001.
[31]  P. A. Grigoriev, B. Schlegel, M. Kronen, A. Berg, A. H?rtl, and U. Gr?fe, “Differences in membrane pore formation by peptaibols,” Journal of Peptide Science, vol. 9, no. 11-12, pp. 763–768, 2003.
[32]  T. N. Kropacheva, E. S. Salnikov, H. H. Nguyen et al., “Membrane association and activity of 15/16-membered peptide antibiotics: Zervamicin IIB, ampullosporin A and antiamoebin I,” Biochimica et Biophysica Acta, vol. 1715, no. 1, pp. 6–18, 2005.
[33]  M. Kronen, H. G?rls, H. H. Nguyen et al., “Crystal structure and conformational analysis of ampullosporin A,” Journal of Peptide Science, vol. 9, no. 11-12, pp. 729–744, 2003.
[34]  G. Srinivas, D. E. Discher, and M. L. Klein, “Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics,” Nature Materials, vol. 3, no. 9, pp. 638–644, 2004.
[35]  Z. I. Lalchev and A. R. MacKie, “Molecular lateral diffusion in model membrane systems,” Colloids and Surfaces B, vol. 15, no. 2, pp. 147–160, 1999.
[36]  E. S. Salnikov, A. J. Mason, and B. Bechinger, “Membrane order perturbation in the presence of antimicrobial peptides by H solid-state NMR spectroscopy,” Biochimie, vol. 91, no. 6, pp. 734–743, 2009.
[37]  M. L?sche, “Surface-sensitive X-ray and neutron scattering characterization of planar lipid model membranes and lipid/peptide interactions,” in Current Topics in Membranes, S. A. Simon and T. J. McIntoshand, Eds., pp. 115–160, Academic Press, San Diego, Calif, USA, 2002.
[38]  E. K. Sinner and W. Knoll, “Functional tethered membranes,” Current Opinion in Chemical Biology, vol. 5, no. 6, pp. 705–711, 2001.
[39]  C. Rossi, L. Béven, D. Ladant, and J. Chopineau, “Surface plasmon resonance spectroscopy for biomimetic membrane assembly and protein-membrane interactions studies,” in Plasmons: Theory and Applications, K. N. Helsey, Ed., Nova, New York, NY, USA, 2010.
[40]  N. Papo and Y. Shai, “Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides,” Biochemistry, vol. 42, no. 2, pp. 458–466, 2003.
[41]  C. Rossi and J. Chopineau, “Biomimetic tethered lipid membranes designed for membrane-protein interaction studies,” European Biophysics Journal, vol. 36, no. 8, pp. 955–965, 2007.
[42]  J. Clementz, “Surface tension of lung extracts,” Proceedings of the Society for Experimental Biology and Medicine, vol. 95, pp. 170–172, 1957.
[43]  S. Castano, B. Desbat, M. Laguerre, and J. Dufourcq, “Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic L(i)K(j)(i=2j) peptides,” Biochimica et Biophysica Acta, vol. 1416, no. 1-2, pp. 176–194, 1999.
[44]  M. N. G. de Mul and J. A. Mann Jr., “Determination of the thickness and optical properties of a Langmuir film from the domain morphology by Brewster angle microscopy,” Langmuir, vol. 14, no. 9, pp. 2455–2466, 1998.
[45]  D. Blaudez, T. Buffeteau, J. C. Cornut et al., “Polarization modulation FTIR spectroscopy at the air-water interface,” Thin Solid Films, vol. 242, no. 1-2, pp. 146–150, 1994.
[46]  S. Lingler, I. Rubinstein, W. Knoll, and A. Offenh?usser, “Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolayers on gold,” Langmuir, vol. 13, no. 26, pp. 7085–7091, 1997.
[47]  C. Rossi, E. Briand, P. Parot, M. Odorico, and J. Chopineau, “Surface response methodology for the study of supported membrane formation,” Journal of Physical Chemistry B, vol. 111, no. 26, pp. 7567–7576, 2007.
[48]  C. Rossi, J. Homand, C. Bauche, H. Hamdi, D. Ladant, and J. Chopineau, “Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes,” Biochemistry, vol. 42, no. 51, pp. 15273–15283, 2003.
[49]  H. Lang, C. Duschl, and H. Vogel, “A new class of thiolipids for the attachment of lipid bilayers on gold surfaces,” Langmuir, vol. 10, no. 1, pp. 197–210, 1994.
[50]  Z. Salamon and G. Tollin, “Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes,” Biophysical Journal, vol. 71, no. 2, pp. 858–867, 1996.
[51]  W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 569–638, 1998.
[52]  R. Maget-Dana, “The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 109–140, 1999.
[53]  I. Cornut, B. Desbat, J. M. Turlet, and J. Dufourcq, “In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface,” Biophysical Journal, vol. 70, no. 1, pp. 305–312, 1996.
[54]  D. F. Kennedy, M. Crisma, C. Toniolo, and D. Chapman, “Studies of peptides forming 310- and α-helices and β-bend ribbon structures in organic solution and in model biomembranes by fourier transform infrared spectroscopy,” Biochemistry, vol. 30, no. 26, pp. 6541–6548, 1991.
[55]  C. Toniolo and E. Benedetti, “The polypeptide 310-helix,” Trends in Biochemical Sciences, vol. 16, no. 9, pp. 350–353, 1991.
[56]  A. L. Plant, “Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold,” Langmuir, vol. 9, no. 11, pp. 2764–2767, 1993.
[57]  J. B. Hubbard, V. Silin, and A. L. Plant, “Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes,” Biophysical Chemistry, vol. 75, no. 3, pp. 163–176, 1998.
[58]  C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophysical Journal, vol. 75, no. 3, pp. 1397–1402, 1998.
[59]  S. Castano and B. Desbat, “Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy,” Biochimica et Biophysica Acta, vol. 1715, no. 2, pp. 81–95, 2005.
[60]  M. D. Lad, F. Birembaut, L. A. Clifton, R. A. Frazier, J. R. P. Webster, and R. J. Green, “Antimicrobial peptide-lipid binding interactions and binding selectivity,” Biophysical Journal, vol. 92, no. 10, pp. 3575–3586, 2007.
[61]  R. Volinsky, S. Kolusheva, A. Berman, and R. Jelinek, “Investigations of antimicrobial peptides in planar film systems,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1393–1407, 2006.
[62]  A. Kouzayha, M. N. Nasir, R. Buchet, O. Wattraint, C. Sarazin, and F. Besson, “Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes,” Journal of Physical Chemistry B, vol. 113, no. 19, pp. 7012–7019, 2009.
[63]  H. H. Nguyen, D. Imhof, M. Kronen, U. Gr?fe, and S. Reissmann, “Circular dichroism studies of ampullosporin—a analogues,” Journal of Peptide Science, vol. 9, no. 11-12, pp. 714–728, 2003.
[64]  M. L. Mangoni, N. Papo, G. Mignogna et al., “Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity,” Biochemistry, vol. 42, no. 47, pp. 14023–14035, 2003.
[65]  H. Mozsolits and M. I. Aguilar, “Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions,” Biopolymers, vol. 66, no. 1, pp. 3–18, 2002.
[66]  H. Mozsolits, H. J. Wirth, J. Werkmeister, and M. I. Aguilar, “Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance,” Biochimica et Biophysica Acta, vol. 1512, no. 1, pp. 64–76, 2001.
[67]  N. Papo and Y. Shai, “Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides,” Biochemistry, vol. 43, no. 21, pp. 6393–6403, 2004.
[68]  S. T. Yang, J. Y. Lee, H. J. Kim et al., “Contribution of a central proline in model amphipathic α-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action,” FEBS Journal, vol. 273, no. 17, pp. 4040–4054, 2006.
[69]  T. M. Bayerl and M. Bloom, “Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by H-nuclear magnetic resonance,” Biophysical Journal, vol. 58, no. 2, pp. 357–362, 1990.
[70]  S. J. Johnson, T. M. Bayerl, D. C. McDermott et al., “Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons,” Biophysical Journal, vol. 59, no. 2, pp. 289–294, 1991.
[71]  H. Heerklotz, H. Szadkowska, T. Anderson, and J. Seelig, “The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton,” Journal of Molecular Biology, vol. 329, no. 4, pp. 793–799, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133