全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Redox Regulation of Calcium Signaling in Cancer Cells by Ascorbic Acid Involving the Mitochondrial Electron Transport Chain

DOI: 10.1155/2012/921653

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previously, we have reported that ascorbic acid regulates calcium signaling in human larynx carcinoma HEp-2 cells. To evaluate the precise mechanism of Ca2+ release by ascorbic acid, the effects of specific inhibitors of the electron transport chain components on mitochondrial reactive oxygen species (ROS) production and Ca2+ mobilization in HEp-2 cells were investigated. It was revealed that the mitochondrial complex III inhibitor (antimycin A) amplifies ascorbate-induced Ca2+ release from intracellular stores. The mitochondrial complex I inhibitor (rotenone) decreases Ca2+ release from intracellular stores in HEp-2 cells caused by ascorbic acid and antimycin A. In the presence of rotenone, antimycin A stimulates ROS production by mitochondria. Ascorbate-induced Ca2+ release in HEp-2 cells is shown to be unaffected by catalase. The results obtained suggest that Ca2+ release in HEp-2 cells caused by ascorbic acid is associated with induced mitochondrial ROS production. The data obtained are in line with the concept of redox signaling that explains oxidant action by compartmentalization of ROS production and oxidant targets. 1. Introduction Redox processes involving transfer of electrons or hydrogen atoms are central processes of energy conversion in respiratory organisms. Recently, it has become apparent that numerous functionally significant biological processes proceed with participation of physical mechanisms ensuring intermolecular electron transfer. Electron transfer between low-molecular weight components of cytosol and intracellular proteins leads to the change of a functional state of both cellular proteins and cells as a whole [1, 2]. All biological systems contain redox elements that play an important role in transcriptional regulation, cell proliferation, apoptosis, hormonal signaling, and other fundamental cell functions [3]. Organization and coordination of the redox activity of these elements occur through redox circuits and depend on the intracellular concentration of redox-active molecules [4, 5]. Redox active molecules may cause both regulatory and toxic effects depending on the value of cellular redox state parameters [5, 6]. However, little is known about mechanisms of regulation, structural organization, and interaction between electron-transport participants inside the cell and other signal and regulatory systems. Recently new effects of such a redox-active molecule as ascorbic acid have been found. Beside numerous regulatory properties (hydroxylation of collagen, biosynthesis of carnitine and noradrenaline, etc.), selective

References

[1]  F. Rusnak and T. Reiter, “Sensing electrons: protein phosphatase redox regulation,” Trends in Biochemical Sciences, vol. 25, no. 11, pp. 527–529, 2000.
[2]  G. M. Ullmann and E. W. Knapp, “Electrostatic models for computing protonation and redox equilibria in proteins,” European Biophysics Journal, vol. 28, no. 7, pp. 533–551, 1999.
[3]  D. P. Jones, “Redox sensing: orthogonal control in cell cycle and apoptosis signalling,” Journal of Internal Medicine, vol. 268, no. 5, pp. 432–448, 2010.
[4]  D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008.
[5]  G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, “Redox regulation of cellular processes: a biophysical model and experiment,” Biophysics, vol. 56, no. 3, pp. 444–451, 2011.
[6]  G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich, and H. Sauer, “Redox buffer capacity of the cell: theoretical and experimental approach,” Cell Biochemistry and Biophysics, vol. 58, no. 2, pp. 75–83, 2010.
[7]  S. Park, S. S. Han, C. H. Park et al., “L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 11, pp. 2180–2195, 2004.
[8]  Y. X. Sun, Q. S. Zheng, G. Li, D. A. Guo, and Z. R. Wang, “Mechanism of ascorbic acid-induced reversion against malignant phenotype in human gastric cancer cells,” Biomedical and Environmental Sciences, vol. 19, no. 5, pp. 385–391, 2006.
[9]  Q. Chen, M. G. Espey, M. C. Krishna et al., “Pharamacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissuse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13604–13609, 2005.
[10]  Q. Chen, M. G. Espey, A. Y. Sun et al., “Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11105–11109, 2008.
[11]  S. Ohno, Y. Ohno, N. Suzuki, G. I. Soma, and M. Inoue, “High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer,” Anticancer Research, vol. 29, no. 3, pp. 809–815, 2009.
[12]  H. B. Pollard, M. A. Levine, O. Eidelman, and M. Pollard, “Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer,” In Vivo, vol. 24, no. 3, pp. 249–255, 2010.
[13]  G. R. Buettner and B. A. Jurkiewicz, “Catalytic metals, ascorbate and free radicals: combinations to avoid,” Radiation Research, vol. 145, no. 5, pp. 532–541, 1996.
[14]  Q. Chen, M. G. Espey, A. Y. Sun et al., “Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8749–8754, 2007.
[15]  J. Suh, B. Z. Zhu, and B. Frei, “Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide,” Free Radical Biology and Medicine, vol. 34, no. 10, pp. 1306–1314, 2003.
[16]  G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, “Effects of ascorbic acid on calcium signaling in tumor cells,” Bulletin of Experimental Biology and Medicine, vol. 147, no. 4, pp. 469–472, 2009.
[17]  R. A. Hirst, C. Harrison, K. Hirota, and D. G. Lambert, “Measurement of [Ca2+]i in whole cell suspensions using fura-2,” Methods in Molecular Biology, vol. 312, pp. 37–45, 2006.
[18]  X. Chen, Z. Zhong, Z. Xu, L. Chen, and Y. Wang, “2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy,” Free Radical Research, vol. 44, no. 6, pp. 587–604, 2010.
[19]  G. Lenaz and M. L. Genova, “Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject,” Antioxidants and Redox Signaling, vol. 12, no. 8, pp. 961–1008, 2010.
[20]  S. Raha and B. H. Robinson, “Mitochondria, oxygen free radicals, disease and ageing,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 502–508, 2000.
[21]  A. I. Al-Ayash and M. T. Wilson, “The mechanism of reduction of single-site redox proteins by ascorbic acid,” Biochemical Journal, vol. 177, no. 2, pp. 641–648, 1979.
[22]  D. Njus, M. Wigle, P. M. Kelley, B. H. Kipp, and H. B. Schlegel, “Mechanism of ascorbic acid oxidation by cytochrome b561,” Biochemistry, vol. 40, no. 39, pp. 11905–11911, 2001.
[23]  A. P. Halestrap, K. Y. Woodfield, and C. P. Connern, “Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3346–3354, 1997.
[24]  I. N. Pessah, K. H. Kim, and W. Feng, “Redox sensing properties of the ryanodine receptor complex,” Frontiers in Bioscience, vol. 7, pp. a72–a79, 2002.
[25]  A. A. Starkov and G. Fiskum, “Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state,” Journal of Neurochemistry, vol. 86, no. 5, pp. 1101–1107, 2003.
[26]  G. G. Martinovich, I. V. Martinovich, E. N. Golubeva, and S. N. Cherenkevich, “Role of hydrogen ions in the regulation of the redox state of erythrocytes,” Biofizika, vol. 54, no. 5, pp. 846–851, 2009.
[27]  A. Y. Andreyev, Y. E. Kushnareva, and A. A. Starkov, “Mitochondrial metabolism of reactive oxygen species,” Biochemistry, vol. 70, no. 2, pp. 200–214, 2005.
[28]  A. A. Starkov, “The role of mitochondria in reactive oxygen species metabolism and signaling,” Annals of the New York Academy of Sciences, vol. 1147, pp. 37–52, 2008.
[29]  M. Giorgio, E. Migliaccio, F. Orsini et al., “Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis,” Cell, vol. 122, no. 2, pp. 221–233, 2005.
[30]  L. S. Terada, “Specificity in reactive oxidant signaling: think globally, act locally,” Journal of Cell Biology, vol. 174, no. 5, pp. 615–623, 2006.
[31]  H. Simonnet, N. Alazard, K. Pfeiffer et al., “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis, vol. 23, no. 5, pp. 759–768, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133