The structural differences between E. coli AmtB and the human RhCG as well as the Rh50 from Nitrosomonas europaea suggest different ammonia conduction mechanisms for the AmtB and the Rh proteins. This study investigates the mechanism differences by using molecular dynamics simulations on RhCG and Rh50NE structures. Unlike AmtB the Rh proteins lack the aromatic cage at the bottom of the periplasmic vestibule. This report establishes the periplasmic Glu residue as the NH+4?binding site for Rh proteins, and the two Phe residues at the entrance of the pore as the NH3 binding site. The?NH+4?molecule pushed by another ammonium releases one of its protons on its way to the phenyl gate. This study also discovers that, unlike AmtB, the Rh protein pores allow water molecules, which eventually facilitates the NH3 conduction from periplasm to cytoplasm.
References
[1]
Zheng, L., Kostrewa, D., Berneche, S., Winkler, F.K. and Li, X.D. (2004) The Mechanism of Ammonia Transport Based on the Crystal Structure of AmtB of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 101, 17090-17095. https://doi.org/10.1073/pnas.0406475101
[2]
Khademi, S., et al. (2004) Mechanism of Ammonia Transport by Amt/MEP/Rh: Structure of AmtB at 1.35 A. Science, 305, 1587-1594. https://doi.org/10.1126/science.1101952
[3]
Andrade, S.L.A., Dickmanns, A., Ficner, R. and Einsle, O. (2005) Crystal Structure of the Archaeal Ammonium Transporter Amt-1 from Archaeoglobus fulgidus. Proceedings of the National Academy of Sciences of the United States of America, 102, 14994-14999. https://doi.org/10.1073/pnas.0506254102
[4]
Li, X., Jayachandran, S., Nguyen, H.H. and Chan, M.K. (2007) Structure of the Nitrosomonas europaea Rh Protein. Proceedings of the National Academy of Sciences of the United States of America, 104, 19279-19284. https://doi.org/10.1073/pnas.0709710104
[5]
Gruswitz, F., et al. (2010) Function of Human Rh Based on Structure of RhCG at 2.1 A. Proceedings of the National Academy of Sciences of the United States of America, 107, 9638-9643. https://doi.org/10.1073/pnas.1003587107
[6]
Zidi-Yahiaoui, N., Mouro-Chanteloup, I., D’Ambrioso, A., et al. (2005) Human Rhesus B and Rhesus C Glycoproteins: Properties of Facilitated Ammonium Transport in Recombinant Kidney Cells. Biochemical Journal, 391, 33-40. https://doi.org/10.1042/BJ20050657
[7]
Wagner, C., Devuyst, O., Belge, H., Bourgeois, S. and Houillier, P. (2010) The Rhesus Protein RhCG: A New Perspective in Ammonium Transport and Distal Urinary Acidification. Kidney International, 79, 154-161. https://doi.org/10.1038/ki.2010.386
[8]
Javelle, A., Lupo, D., Ripoche, P., Fulford, T., Merrick, M. and Winkler, F.K. (2008) Substrate Binding, Deprotonation, and Selectivity at the Periplasmic Entrance of the Escherichia coli Ammonia Channel AmtB. Proceedings of the National Academy of Sciences of the United States of America, 105, 5040-5045. https://doi.org/10.1073/pnas.0711742105
[9]
Akgun, U. and Khademi, S. (2011) Periplasmic Vestibule Plays an Important Role for Solute Recruitment, Selectivity, and Gating in the Rh/Amt/MEP Superfamily. Proceedings of the National Academy of Sciences of the United States of America, 108, 3970-3975. https://doi.org/10.1073/pnas.1007240108
[10]
Biver, S., Belge, H., Bourgeois, S., et al. (2008) A Role for Rhesus Factor Rhcg in Renal Ammonium Excretion and Male Fertility. Nature, 456, 339-343. https://doi.org/10.1038/nature07518
[11]
Attmane-Elakeb, A., Amlal, H. and Bichara, M. (2001) Ammonium Carriers in Medullary Thick Ascending Limb. American Journal of Physiology-Renal Physiology, 280, F1-F9. https://doi.org/10.1152/ajprenal.2001.280.1.F1
[12]
Weiner, D. and Verlander, J. (2010) Role of NH3 and NH+4 Transporters in Renal Acid-Base Transport. American Journal of Physiology-Renal Physiology, 300, F11-F23. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023229/#B38
[13]
Weiner, D. and Verlander, J.W. (2010) Molecular Physiology of the Rh Ammonia Transport Proteins. Current Opinion in Nephrology and Hypertension, 19, 471-477. https://doi.org/10.1097/MNH.0b013e32833bfa4e
[14]
Lupo, D., Li, X., Durand, A., et al. (2007) The 1.3-A Resolution Structure of Nitrosomonas europaea Rh50 and Mechanistic Implications for NH3 Transport by Rhesus Family Proteins. Proceedings of the National Academy of Sciences of the United States of America, 104, 19303-19308. https://doi.org/10.1073/pnas.0706563104
[15]
Zidi-Yahiaoui, N., Callebaut, I., Genetet, S., et al. (2009) Functional Analysis of Human RhCG: Comparison with E. coli Ammonium Transporter Reveals Similarities in the Pore and Differences in the Vestibule. American Journal of Physiology: Cell Physiology, 297, C537-C547. https://doi.org/10.1152/ajpcell.00137.2009
[16]
Chérif-Zahar, B., Durand, A., Schmidt, I., Hamdaoui, N., Matic, I., Merrick, M. and Matassi, G. (2007) Evolution and Functional Characterization of the RH50 Gene from the Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Journal of Bacteriology, 189, 9090-9110. https://doi.org/10.1128/JB.01089-07
[17]
Hub, J.S., Winkler, F.K., Merrick, M. and de Groot, B.L. (2010) Potentials of Mean Force and Permeabilities for Carbon Dioxide, Ammonia, and Water Flux across a Rhesus Protein Channel and Lipid Membranes. Journal of the American Chemical Society, 132, 13251-13263. https://doi.org/10.1021/ja102133x
[18]
Baday, S., Shihao, W., Lamoureux, G. and Bernèche, S. (2013). Different Hydration Patterns in the Pores of AmtB and RhCG Could Determine Their Transport Mechanisms. Biochemistry, 52, 7091-7098. https://doi.org/10.1021/bi400015f
[19]
Lamoureux, G., Klein, M.L. and Berneche, S. (2007) A Stable Water Chain in the Hydrophobic Pore of the AmtB Ammonium Transporter. Biophysical Journal, 92, L82-L84. https://doi.org/10.1529/biophysj.106.102756
[20]
Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010) Features and Development of Coot. Acta Crystallographica Section D Biological Crystallography, 66, 486-501. https://doi.org/10.1107/S0907444910007493
[21]
Emsley, P. and Cowtan, K. (2004) Coot: Model-Building Tools for Molecular Graphics. Acta Crystallographica Section D Biological Crystallography, 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
[22]
Schwieters, C.D., Kuszewski, J.J., Tjandra, N. and Clore, G.M. (2003) The Xplor-NIH NMR Molecular Structure Determination Package. Journal of Magnetic Resonance, 160, 65-73. https://doi.org/10.1016/S1090-7807(02)00014-9
[23]
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.D. and Klein, M.L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. The Journal of Chemical Physics, 79, 926-935. https://doi.org/10.1063/1.445869
[24]
Phillips, J.C., Braun, R., Wang, W., et al. (2005) Scalable Molecular Dynamics with NAMD. Journal of Computational Chemistry, 26, 1781-1802. https://doi.org/10.1002/jcc.20289
[25]
MacKerell, A.D., Bashford, D., Bellott, M., et al. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. The Journal of Physical Chemistry B, 102, 3586-3616. https://doi.org/10.1021/jp973084f
[26]
Schlenkrich, M., Brickmann, J., MacKerell, A.D. and Karplus, M. (1996) An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In: Merz, K.M. and Roux, B., Eds., Biological Membranes, Birkhäuser, Boston, 31-81. https://doi.org/10.1007/978-1-4684-8580-6_2
[27]
Feller, S.E., Zhang, Y.H., Pastor, R.W. and Brooks, B.R. (1995) Constant Pressure Molecular Dynamics Simulation the Langevin Piston Method. The Journal of Chemical Physics, 103, 4613-4621. https://doi.org/10.1063/1.470648
[28]
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. (1995) A Smooth Particle Mesh Ewald Method. The Journal of Chemical Physics, 103, 8577. https://doi.org/10.1063/1.470117
[29]
Kumar, S., Rosenberg, J., Bouzida, D., Swendsen, R. and Kollman, P. (1995) Multidimensional Free-Energy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry, 16, 1339-1350. https://doi.org/10.1002/jcc.540161104
[30]
Roux, B. (1995) The Calculation of the Potential of Mean Force Using Computer Simulations. Computer Physics Communications, 91, 275-282. https://doi.org/10.1016/0010-4655(95)00053-I