The temporal dynamics of the edge dislocation (ED) was studied in this work using the inhomogeneous dissipative sine-Gordon (SG) equation. The consideration was carried out for the force action levels both less and more critical. By SG equation numerical calculations it is shown that at the external force value below a critical one the ED takes a shape close to a semicircle. This shape was used as an initial condition for describing the ED temporal dynamics in the FR source operating mode. A particular solution of the SG equation is proposed that describes the temporal dynamics of half the ED in the FR mode, which rests on a stopper at the origin. It is shown that the proposed particular solution corresponds to the left Archimedes spiral displaced at π/2 counterclockwise relative to the azimuth angle equal to zero. It is noted that the temporal dynamics of the second half of the ED segment rested on the second stopper is described by the proposed particular solution, when it is mirrored relative to the problem symmetry axis and the center of the spiral is displaced to a point with a zero azimuthal angle and a radius equal to the distance between the stoppers. The axis of symmetry is a straight line that is perpendicular and halves the distance between the stoppers. A graphical description of the ED temporal dynamics was plotted in the Cartesian coordinate system based on the proposed particular solution and its mirror and displaced image. It is shown that the particular solution of the SG equation in the RF source operation mode involves two Archimedes spirals symmetrical relative to the problem symmetry axis with equal radii increasing linearly with time, which rotate: one (the spiral center coincides with the stopper at the origin) counterclockwise, the second (the spiral center coincides with the second stopper) clockwise.
References
[1]
Frank, F.C. and Read, W.T. (1950) Multiplication Processes for Slow Moving Dislocations. Physical Review, 79, 722-723. https://doi.org/10.1103/PhysRev.79.722
[2]
Khonykomb, R. (1972) Plastychna deformatsiya metaliv, Moskva.
[3]
Formen, A. and Meykyn, M. (1968) Aktual’ni pytannya teoriyi dyslokatsiy. Dvyzhenye dyslokatsyy skvoz’ khaotychni setky prepyat stvyy, Moskva.
[4]
Dubnova, H.N., Indenbom, V.L. and Shtol’berh, A.A. (1968) Pro probahani dyslokatsiynoho sehmentu ta istoryka Franka-Ryda. Fizyka tverdoho tela, 10, 1760-1768.
[5]
Stratan, N.V. and Predvodytelev, A.A. (1970) Modelyuvannya protsesiv peremishchennya dyslokatsiy u dyslokatsiynomu ansambli. Fizyka tverdoho tela, 12, 1729-1733.
Belan, V.I. and Landau, A.I. (1986) Bezaktyvatsiyne pronyknennya dyslokatsiy u khaotychniy svidomosti tochechnykh prepyat stviy. Metalofizyka, 8, 103-108.
[8]
Kontorova, T.A. and Frenkel’, Y.A.I. (1938) K teoriyi plastychnoyi deformatsiyi ta podviynosti. ZHéTF (CH. I.), 8, 89-95; ZHéTF (CH. II.); 8, 1340-1348.
[9]
Popov, V.L. and Hrey, Z.H.A.T.(2012) Retrospektyvna model’ Prandtl-Tomlinsona: istoriya ta zastosuvannya v terti, plastychnosti ta nanotekhnolohiyi. Z. Anzhev. Matematyka. Mekh, 92, 683-708.
[10]
Hranato, A. and Lyukke, K. (1963) Dyslokatsiyna teoriya pohloshchennya. V kn .: Ul’trazvukovi metody metodolohiyi doslidzhennya, Moskva.
[11]
Khirt, Dzh. and Lote, I. (1972) Teoriya dyslokatsiy. Per. s anhl, Moskva.
Natsyk, V.D. and Chyshko, K.A. (1975) Dynamika ta zvukove vyvedennya dyslokatsiynoho dzherela Franka—Ryda. Fizyka tverdoho tela, 17, 342-345.
[19]
Natsyk, V.D., Chyshko, K. A. (1992) Formulyrovka osnovnoyi zadachi teoriyi akustychnoyi emisiyi dlya tverdykh tel z dyspersiyeyu ta zatukhannyam. Akustychnyy zhurnal, 38, 511-509.
[20]
Khemminh, R.V. (1968) Chyslennye metody. Moskva.
[21]
Fogel, M.B., Trullinger, S.E., Bishop, A.R. and Krumhansl, J.A. (1977) Dynamics of Sine-Gordon Solitons in the Presence of Perturbations. Physical Review B, 15, 1578-1592. https://doi.org/10.1103/PhysRevB.15.1578
[22]
Reinisch, G. and Fernandez, J.C. (1981) Specific Sine-Gordon Soliton Dynamics in the Presence of External Driving Forces. Physical Review B, 24, 835-844. https://doi.org/10.1103/PhysRevB.24.835
[23]
Braun, O.M. and Kyvshar’, Y.U.S. (2008) Model’ Frenkelya-Kontorovoy. Kontseptsiyi, metody, dodatky. Per. z anhl. pid red. A. V. Savina, M.: FYZMATLYT, 536s.
[24]
Niblett, D. and Uilks, Dzh. (1963) Vnutrenne treni v metalakh, pov'yazane z dyslokatsiyeyu. UFN, 80, 125-187.