全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

可见/近红外光谱技术识别树叶树种的研究

DOI: 10.3969/j.issn.1001-7461.2019.01.35

Keywords: 可见/近红外光谱, 树种识别, 树叶, 偏最小二乘法

Full-Text   Cite this paper   Add to My Lib

Abstract:

探索使用可见/近红外光谱技术识别树叶树种的可行性,为野外可见/近红外光谱技术用于树种识别提供方法。本试验识别了9个树种,测试了光谱预处理方法、识别方法对可见/近红外光谱识别的准确率的影响。对9种阔叶树种共46棵树,分别采用距离法和PLS-DA建立识别模型,比较不同波段和导数预处理方法对模型预测效果的影响。结果表明,使用距离法对原始光谱进行识别时,识别准确率<50%,不能够有效识别树叶树种。使用距离法对预处理后的光谱进行识别时,识别准确率为近红外350~2 500 nm(99.16%)>350~1 000 nm(88.05%)>1 000~2 500 nm(81.24%),且任意单个树种的识别准确率都>98%,能够有效识别树叶树种。使用偏最小二乘法(PLS-DA)结合单列识别变量矩阵时,识别准确率高达100%,识别模型的相关系数为0.993 6,RMSEC为0.120,RMSEP为0.144,但只能成功识别4种树叶树种,当树叶种数>4时,预测模型的识别准确率陡降。使用偏最小二乘法(PLS-DA)结合多列识别变量矩阵对9种树叶的识别准确率高达99.58%,识别模型的相关系数为0.888 6~0.956 9,RMSEC为0.084 5~0.15,RMSEP为0.088 7~0.155。本试验为可见/近红外光谱技术快速识别树种提供了一种新的方法和思路

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133