|
- 2020
连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素
|
Abstract:
基于高强、高韧、高模和压拉平衡为特征的第三代先进复合材料的需求,综述了连续纤维增强树脂复合材料纵向压缩强度预测模型的发展历程。基于纤维微屈曲、纤维扭结带、联合预测模型及渐进损伤失效模型,分别讨论了连续纤维增强树脂复合材料压缩失效机制,并在联合预测模型基础上,探究了碳纤维(直径、模量、体积分数、初始偏角)、树脂基体(弹性模量、剪切模量)及纤维/树脂界面三要素对连续纤维增强树脂复合材料纵向压缩强度和压缩失效形式的影响。 Based on the demand of the third generation of advanced composites characterized by high strength, high toughness, high modulus and the balance of compressive and tensile strength, the development history of prediction model of continuous fiber reinforced polymer composite compressive strength was reviewed. The compressive failure mechanisms of continuous fiber reinforced polymer composites were discussed according to fiber microbuckling model, fiber kink-band model, combined model and progressive damage failure model. On the basis of the combined prediction model, the effects of carbon fiber (monofilament diameter, elastic modulus, volume fraction, initial deflection angle), polymer matrix (elastic modulus and shear modulus) and fiber/polymer interface on compressive strength and failure mode of continuous fiber reinforced polymer composite were investigated
[1] | BAZHENOV S L, KUPERMAN A M, ZELENSKII E S, et al. Compression failure of unidirectional glass-fibre-reinforced plastics[J]. Composites Science and Technology, 1992, 45(3):201-208. |
[2] | PINNELL M F. An examination of the effect of composite constituent properties on the notched-strength performance of composite materials[J]. Composites Science and Technology, 1996, 56(12):1405-1413. |
[3] | HACKETT S C, NELSON J M, HINE A M, et al. The effect of nanosilica concentration on the enhancement of epoxy matrix resins for prepreg composites resin flow[C]//Society for the Advancement of Materials and Process Engineering. Covina:SAMPE, 2010:11-14. |
[4] | NELSON J M, HACKETT S C, GOETZ D P, et al. Development of nanosilica-thermoset matrix resins for prepreg composites[C]//Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo. CRC Press, 2012, 1:551-555. |
[5] | BUDIANSKY B, FLECK N A. Compressive kinking of fiber composites:A topical review[J]. Applied Mechanics Reviews, 1994, 47(s6):246-250. |
[6] | WISNOM M R. The effect of fibre misalignment on the compressive strength of unidirectional carbon fibre/epoxy[J]. Composites, 1990, 21(5):403-407. |
[7] | RICCIO A. Damage growth in aerospace composites[M]. Springer International Publishing, 2015. |
[8] | GUTKIN R, PINHO S T, ROBINSON P, et al. On the transition from shear-driven fibre compressive failure to fibre kinking in notched CFRP laminates under longitudinal compression[J]. Composites Science and Technology, 2010, 70(8):1223-1231. |
[9] | BUDIANSKY B. Micromechanics[J]. Computers & Structures, 1983, 16(1-4):3-12. |
[10] | YURGARTIS S W. Measurement of small angle fiber misalignments in continuous fiber composites[J]. Composites Science and Technology, 1987, 30(4):279-293. |
[11] | GUTKIN R, PINHO S T. Combining damage and friction to model compressive damage growth in fibre reinforced composites[J]. Journal of Composite Materials, 2014, 49(20):2483-2495. |
[12] | GUTKIN R, COSTA S, OLSSON R. A physically based model for kink-band growth and longitudinal crushing of composites under 3D stress states accounting for friction[J]. Composites Science & Technology, 2016, 135:39-45. |
[13] | PIMENTA S, GUTKIN R, PINHO S T, et al. A micromechanical model for kink-band formation Part II:Analytical modelling[J]. Composites Science and Technology, 2009, 69(7-8):956-964. |
[14] | YONGBO Z, HUIMIN F. On the longitudinal compressive strength prediction of unidirectional laminated composites based on an improved model[J]. Polymer Composites, 2011, 32(11):1817-1826. |
[15] | PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking Part I:Development[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(1):63-73. |
[16] | PINHO S T, IANNUCCI L, ROBINSON P. Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking Part II:FE implementation[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(5):766-777. |
[17] | HAHN H T, SOHI M M. Buckling of a fiber bundle embedded in epoxy[J]. Composites Science and Technology, 1986, 27(1):25-41. |
[18] | HANCOX N L. The compression strength of unidirectional carbon fibre reinforced plastic[J]. Journal of Materials Science, 1975, 10(2):234-242. |
[19] | PIGGOTT M R, HARRIS B. Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins[J]. Journal of Materials Science, 1980, 15(10):2523-2538. |
[20] | JELF P M, FLECK N A. Compression failure mechanisms in unidirectional composites[J]. Journal of Composite Materials, 1992, 26(18):2706-2726. |
[21] | KIM S J, CHANG S H. The relation between compressive strength of carbon/epoxy fabrics and micro-tow geometry with various bias angles[J]. Composite Structures, 2006, 75(1-4):400-407. |
[22] | WANG Y, BURNETT T L, CHAI Y, et al. X-ray computed tomography study of kink bands in unidirectional composites[J]. Composite Structures, 2017, 160:917-924. |
[23] | STECENKO T B, STEVANOVI? M M. Effect of fibre waviness on compression failure of cross-ply carbon/epoxy laminates[J]. Materials Science Forum, 2000, 352:189-194. |
[24] | ELHAJJAR R F, SHAMS S S. Compression testing of continuous fiber reinforced polymer composites with out-of-plane fiber waviness and circular notches[J]. Polymer Testing, 2014, 35:45-55. |
[25] | SUN C T, JUN A W. Compressive strength of unidirectional fiber composites with matrix non-linearity[J]. Composites Science and Technology, 1994, 52(4):577-587. |
[26] | MA P, JIANG G, CHEN Q, et al. Experimental investigation on the compression behaviors of epoxy with carbon nanotube under high strain rates[J]. Composites Part B:Engineering, 2015, 69:526-533. |
[27] | BUDIANSKY B, FLECK N A. Compressive failure of fibre composites[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1):183-211. |
[28] | DOW N F, GRUNFEST I J. Determination of most needed potentially possible improvements in materials for ballistic and space vehicles:TISR6OSD389[R]. US:General Electric Company, Space Science Laboratory, 1960. |
[29] | BERBINAU P, SOUTIS C, GUZ I A. Compressive failure of 0 unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling[J]. Composites Science and Technology, 1999, 59(9):1451-1455. |
[30] | SADOWSKY M A, PU S L, HUSSAIN M A. Buckling of microfibers[J]. Journal of Applied Mechanics, 1967, 34(4):1011-1016. |
[31] | SCHULTHEISZ C R, WAAS A M. Compressive failure of composites Part I:Testing and micromechanical theories[J]. Progress in Aerospace Sciences, 1996, 32(1):1-42. |
[32] | TOTRY E, MOLINA-ALDAREGUíA J M, GONZáLEZ C, et al. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J]. Composites Science and Technology, 2010, 70(6):970-980. |
[33] | 吴莎, 刘建超, 廖英强. 碳纤维复合材料层合板压缩性能的相关影响因素[J]. 材料科学与工艺, 2017, 25(3):63-68.WU S, LIU J C, LIAO Y Q. The influencing factors of compressive strength in carbon fiber reinforced composite laminates[J]. Materials Science and Technology, 2017, 25(3):63-68(in Chinese). |
[34] | 方奕欣, 陈蔚, 蒋震宇, 等. 碳纤维和SiO2纳米颗粒增强环氧树脂复合材料的压缩性能[J]. 复合材料学报, 2019, 36(6):1343-1352. FANG Y X, CHEN W, JIANG Z Y, et al. Compressive performance of multiple-scale phase reinforced composites containing carbon fibers and silica nanoparticle-modified epoxy matrix[J]. Acta Materiae Compositae Sinica, 2019, 36(6):1343-1352(in Chinese). |
[35] | DE-MORAIS A B. Prediction of the layer longitudinal compression strength[J]. Journal of composite materials, 2000, 34(21):1808-1820. |
[36] | LO K H, CHIM E S M. Compressive strength of unidirectional composites[J]. Journal of Reinforced Plastics and Composites, 1992, 11(8):838-896. |
[37] | BASU S, WAAS A M, AMBUR D R. Compressive failure of fiber composites under multi-axial loading[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(3):611-634. |
[38] | BEDNARCYK B A, ABOUDI J, ARNOLD S M. The effect of general statistical fiber misalignment on predicted damage initiation in composites[J]. Composites Part B:Engineering, 2014, 66:97-108. |
[39] | LI Y, STIER B, BEDNARCYK B, et al. The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites[J]. Mechanics of Materials, 2016, 92:261-274. |
[40] | XU Y L, REIFSNIDER K L. Micromechanical modeling of composite compressive strength[J]. Journal of Composite Materials, 1993, 27(6):572-588. |
[41] | HAHN H T, WILLIAMS J G. Compression failure mechanisms in unidirectional composites[C]//Composite Materials:Testing and Design (Seventh Conference). West Conshohocken:ASTM International, 1986. |
[42] | JENSEN H M, CHRISTOFFERSEN J. Kink band formation in fiber reinforced materials[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7):1121-1136. |
[43] | ARGON A S. Fracture of composites[J]. Treatise on Materials Science and Technology, 2013, 1:79-114. |
[44] | FLECK N A, BUDIANSKY B. Compressive failure of fibre composites due to microbuckling[C]//DVORAK G J. Inelastic Deformation of Composite Materials:IUTAM Symposium. New York:Springer, 1991:235-273. |
[45] | LAGOUDAS D C, SALEH A M. Compressive failure due to kinking of fibrous composites[J]. Journal of Composite Materials, 1993, 27(1):83-106. |
[46] | PIMENTA S, GUTKIN R, PINHO S T, et al. A micromechanical model for kink-band formation Part I:Experimental study and numerical modelling[J]. Composites Science and Technology, 2009, 69(7-8):948-955. |
[47] | JUMAHAT A, SOUTIS C, JONES F R, et al. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures, 2010, 92(2):295-305. |
[48] | CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9):834-855. |
[49] | 张弥, 关志东, 黎增山, 等. 考虑纤维初始位错的复合材料轴向压缩性能[J]. 复合材料学报, 2017, 34(8):1754-1763 ZHANG M, GUAN Z D, LI Z S, et al. Longitudinal compressive properties of composites considering giber initial misalignment[J]. Acta Materiae Compositae Sinica, 2017, 34(8):1754-1763(in Chinese). |
[50] | NAYA F, HERRáEZ M, LOPES C S, et al. Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions[J]. Composites Science and Technology, 2017, 144:26-35. |
[51] | 薛康, 肖毅, 王杰, 等. 单向纤维增强聚合物复合材料压缩渐进破坏[J]. 复合材料学报, 2019, 36(6):1398-1412. XUE K, XIAO Y, WANG J, et al. Compression progressive failure of unidirectional fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2019, 36(6):1398-1412(in Chinese) |
[52] | DHARAN C K H, LIN C L. Longitudinal compressive strength of continuous fiber composites[J]. Journal of Composite Materials, 2007, 41(11):1389-1405. |
[53] | YERRAMALLI C S, WAAS A M. The effect of fiber diameter on the compressive strength of composites:A 3D finite element based study[J]. Computer Modeling in Engineering and Sciences, 2004, 6(1):1-16. |
[54] | WAAS A M, SCHULTHEISZ C R. Compressive failure of composites Part II:Experimental studies[J]. Progress in Aerospace Sciences, 1996, 32(1):43-78. |
[55] | THOMPSON R. Compressive strength of continuous fiber unidirectional composites[D]. Clemson:Clemson University, 2012. |
[56] | THOMPSON R H, JOSEPH P, DELFINO A, et al. Critical compressive stress for continuous fiber unidirectional composites[J]. Journal of Composite Materials, 2012, 46(26):3231-3245. |
[57] | FLECK N A. Compresssive failure of fiber composites[J]. Advances in Applied Mechanics, 1997, 33:43-117. |
[58] | ODOM E M, ADAMS D F. Failure modes of unidirectional carbon/epoxy composite compression specimens[J]. Composites, 1990, 21(4):289-296. |
[59] | OPELT C V, CANDIDO G M, REZENDE M C. Compressive failure of fiber reinforced polymer composites:A fractographic study of the compression failure modes[J]. Materials Today Communications, 2018, 15:218-227. |
[60] | DANIEL I M, ISHAI O. Engineering mechanics of composite materials[M]. New York:Oxford University Press, 1994. |
[61] | ADAMS D O, HYER M W. Effects of layer waviness on the compression response of laminates[C]//GROVES S, HIGHSMITH A. Compression Response of Composite Structures. West Conshohocken:ASTM International, 1994:65-77. |
[62] | DE-MORAIS A B, MARQUES A T. A micromechanical model for the prediction of the lamina longitudinal compression strength of composite laminates[J]. Journal of Composite Materials, 1997, 31(14):1397-1412. |
[63] | GOETZ D P, PORTELLI G B, HINE A M. The dependence of composite lamina compression strength on matrix modulus[C]//FINLAYSON K M, OSBORN K R, SHALABY W. Conference on composite Materials, 6th. Orlando:CRC Press, 1992:78-86 |
[64] | MADHUKAR M S, DRZAL L T. Fiber-matrix adhesion and its effect on composite mechanical properties III:Longitudinal (0°) compressive properties of graphite/epoxy composites[J]. Journal of Composite Materials, 1992, 26(3):310-333. |
[65] | BERBINAU P, SOUTIS C, GOUTAS P, et al. Effect of off-axis ply orientation on 0°-fibre microbuckling[J]. Composites Part A:Applied Science and Manufacturing, 1999, 30(10):1197-1207. |
[66] | ROBINSON P, GREENHALGH E, PINHO S. Failure mechanisms in polymer matrix composites:Criteria, testing and industrial applications[M]. Woodhead Publishing Limited, 2012. |
[67] | NAIK N K, KUMAR R S. Compressive strength of unidirectional composites:Evaluation and comparison of prediction models[J]. Composite structures, 1999, 46(3):299-308. |
[68] | ROSEN B W. Mechanics of composite strengthening in fiber composite materials[M]. Ohio:American Society for Metals, 1965. |
[69] | MIWA M, YOKOI T, TAKENO A. Relation between shear yield strength at the fiber-matrix interphase and Young's modulus of epoxy resin[J]. Composite Interfaces, 2000, 7(5-6):487-495. |
[70] | WEI S U N, ZHIDONG G, ZENGSHAN L I, et al. Compressive failure analysis of unidirectional carbon/epoxy composite based on micro-mechanical models[J]. Chinese Journal of Aeronautics, 2017, 30(6):1907-1918. |
[71] | PRABHAKAR P, WAAS A M. Interaction between kinking and splitting in the compressive failure of unidirectional fiber reinforced laminated composites[J]. Composite Structures, 2013, 98:85-92. |
[72] | OPELT C V, PAIVA J M F, C?NDIDO G M, et al. A fractographic study on the effects of hygrothermal conditioning on carbon fiber/epoxy laminates submitted to axial compression[J]. Engineering Failure Analysis, 2017, 79:342-350. |
[73] | KYRIAKIDES S, ARSECULERATNE R, PERRY E J, et al. On the compressive failure of fiber reinforced composites[J]. International Journal of Solids and Structures, 1995, 32(6-7):689-738. |