|
- 2019
不同TiB2颗粒粒径的TiB2/Cu复合材料耐电弧侵蚀行为
|
Abstract:
采用放电等离子烧结法(SPS)制备了不同TiB2颗粒粒径的3wt% TiB2/Cu复合材料,研究了3wt% TiB2/Cu复合材料致密度、导电率、硬度和耐电弧侵蚀性能随TiB2颗粒粒径的变化规律,重点分析了不同TiB2颗粒粒径的3wt% TiB2/Cu复合材料耐电弧侵蚀行为。结果表明:3wt% TiB2/Cu复合材料致密度和硬度随TiB2颗粒粒径的增大而略有降低;TiB2颗粒粒径越小,TiB2/Cu复合材料的综合性能越好。随着TiB2颗粒粒径的增大,3wt% TiB2/Cu复合材料耐蚀稳定性降低,3wt% TiB2/Cu阴极材料的损耗量明显增加;当TiB2颗粒粒径为10 μm时,3wt% TiB2/Cu复合材料的耐电弧侵蚀性能最佳。电弧蚀形貌观察表明:不同TiB2颗粒粒径的3wt% TiB2/Cu复合材料经电弧侵蚀后,3wt% TiB2/Cu复合材料均由阴极向阳极发生转移;随着TiB2颗粒粒径的增大,阴极质量损耗逐渐增加,触头表面电弧侵蚀面积增加;而在Cu基体中引入较小的TiB2颗粒,有利于减弱电接触实验过程中TiB2/Cu复合材料的喷溅现象。 The 3wt%TiB2/Cu composites reinforced with different sized TiB2 particles were prepared by spark plasma sintering (SPS). The variations of density, electrical conductivity, hardness and arc resistance of 3wt%TiB2/Cu composites with the TiB2 particle size were studied, and arc erosion behavior of the TiB2/Cu composites reinforced with different sized TiB2 particles were emphatically analyzed. The results show that the hardness and density of 3wt%TiB2/Cu composite decrease gently with increasing of TiB2 particles size. The comprehensive performance of 3wt%TiB2/Cu composite with fine TiB2 particle size is better. With the increase of TiB2 particles size, the stability of the arc erosion resistance of 3wt%TiB2/Cu composites decreases, and the mass loss of 3wt%TiB2/Cu composites cathode material increases. The arc erosion resistance of 3wt%TiB2/Cu composite reinforced with 10 μm TiB2 particles is optimal. Observations on arc erosion morphology show that 3wt%TiB2/Cu composites are mostly transferred from cathodes to anodes, and the mass loss of cathode and arc erosion area on the contact surface increase gradually with increasing of the TiB2 particle size, which shows that the fine TiB2 particles in Cu matrix can reduce the splashing of molten copper during arc erosion. 国家自然科学基金(U1502274;51605146);河南省科技攻关计划(国际合作项目)(172102410046);河南省创新科技团队(C20150014);中国博士后科学基金资助项目(2018M632769
[1] | 周晓龙, 陈敬超, 曹建春, 等. 反应合成制备Ag/CuO电触头材料及其组织性能[J]. 机械工程材料, 2005, 29(11):49-51.ZHOU X L, CHEN J C, CAO J C, et al. Microstructure and properties of Ag/CuO electrical contact materials fabricated by reactive synthesis[J]. Materials for Mechanical Engineering, 2005, 29(11):49-51(in Chinese). |
[2] | BIYIK S, ARSLAN F, AYDIN M. Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying[J]. Journal of Electronic Materials, 2015, 44(1):457-466. |
[3] | CELEBI-EFE G, ALTINSOY I, YENER T, et al. Characterization of cemented Cu matrix composites reinforced with SiC[J]. Vacuum, 2010, 85(5):643-647. |
[4] | REN F Z, ZHI A J, ZHANG D W, et al. Preparation of Cu-Al2O3 bulk nano-composites by combining Cu-Al alloy sheets internal oxidation with hot extrusion[J]. Journal of Alloys and Compounds, 2015, 633:323-328. |
[5] | ZOU C L, CHEN Z N, KANG H J, et al. Study of enhanced dry sliding wear behavior and mechanical properties of Cu-TiB2 composites fabricated by in situ casting process[J]. Wear, 2017, 392:118-125. |
[6] | CHU K, JIA C C, LIANG X B, et al. Temperature dependence of thermal conductivity in SiCP based metal-matrix composites[J]. Materials Science and Technology, 2011, 27(1):91-94. |
[7] | 李桂景, 王献辉, 邹军涛, 等. AgTiB2复合材料电弧侵蚀行为研究[J]. 贵金属, 2011, 32(3):36-41.LI G J, WANG X H, ZOU J T, et al. Investigation on arc erosion behavior of AgTiB2 composite[J]. Precious Metals, 2011, 32(3):36-41(in Chinese). |
[8] | WANG X H, YANG H, LIANG S H, et al. Effect of TiB2 particle size on erosion behavior of Ag-4wt% TiB2 composite[J]. Rare Metal Materials and Engineering, 2015, 44(11):2612-2617. |
[9] | ZIEMNICKA-SYLWESTER M. The Cu matrix cermets remarkably strengthened by TiB2 "in situ" synthesized via self-propagating high temperature synthesis[J]. Materials & Design, 2014, 53:758-765. |
[10] | 宋克兴, 李韶林, 国秀花. TiB2含量对TiB2/Cu复合材料抗电蚀性能的影响[J]. 机械工程材料, 2014, 38(2):54-58.SONG K X, LI S L, GUO X H. Effect of TiB2 content on arc erosion resistance of TiB2/Cu composites[J]. Materials for Mechanical Engineering, 2014, 38(2):54-58(in Chinese). |
[11] | 郭迎春, 耿永红, 陈松, 等. 电触点直流电侵蚀研究[J]. 稀有金属材料与工程, 2007, 36(s3):264-268.GUO Y C, GENG Y H, CHEN S, et al. DC electric erosion of electric contacts[J]. Rare Metal Materials and Engineering, 2007, 36(s3):264-268(in Chinese). |
[12] | PANDEY A, VERMA P, PANDEY O P. Comparison of properties of silver-tin oxide electrical contact materials through different processing routes[J]. Indian Journal of Engineering & Materials Sciences, 2010, 15(3):236-240. |
[13] | 邰枫, 郭福, 刘彬, 等. 等温时效对新型Sn-Ag基复合钎料显微组织和力学性能的影响[J]. 复合材料学报, 2008, 25(5):8-13.TAI F, GUO F, LIU B, et al. Microstructure evolution and mechanical properties of Sn-Ag based composite solder joints during isothermal aging[J]. Acta Materiae Compositae Sincia, 2008, 25(5):8-13(in Chinese). |
[14] | LI H Y, WANG X H, GUO X H, et al. Material transfer behavior of AgTiB2 and AgSnO2 electrical contact materials under different currents[J]. Materials & Design, 2017, 114:139-48 |
[15] | GUO X H, SONG K X, LIANG S H, et al. Relationship between the MgOP/Cu interfacial bonding state and the arc erosion resistance of MgO/Cu composites[J]. Journal of Materials Research, 2017, 32(19):3753-3760. |
[16] | TJONG S C, WANG G S. Low-cycle fatigue behavior of in situ TiB2/Cu composite prepared by reactive hot pressing[J]. Journal of Materials Science, 2006, 41(16):5263-5268. |
[17] | BAGHERI G A. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. Journal of Alloys and Compounds, 2016, 676:120-126. |
[18] | WANG X H, YANG H, CHEN M, et al. Fabrication and arc erosion behaviors of AgTiB2 contact materials[J]. Powder Technology, 2014, 256:20-24. |
[19] | 郭明星, 汪明朴, 李周, 等. TiB2/Cu金属基复合材料的研究[J]. 材料导报, 2004, 18(8):39-42.GUO M X, WANG M P, LI Z, et al. The studies of TiB2/Cu metal matrix composites[J]. Materials Review, 2004, 18(8):39-42(in Chinese). |
[20] | 王耐艳, 涂江平, 杨友志, 等. 原位反应纳米TiB2/Cu复合材料的制备和微结构[J]. 中国有色金属学报, 2002, 12(1):151-154.WANG N Y, TU J P, YANG Y Z, et al. Preparation and microstructure of nanoscale TiB2/Cu in-situ composites[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(1):151-154(in Chinese). |
[21] | 李国辉, 刘勇, 国秀花, 等. TiB2/Cu复合材料的电弧侵蚀行为[J]. 复合材料学报, 2018, 35(3):616-622.LI G H, LIU Y, GUO X H, et al. Arc erosion behavior of TiB2/Cu composites[J]. Acta Materiae Compositae Sincia, 2018, 35(3):616-622(in Chinese). |
[22] | 陈娟, 王献辉, 成军, 等. 添加LaB6的CuW70触头材料的电弧侵蚀行为[J]. 中国有色金属学报, 2015, 25(11):3147-3154.CHEN J, WANG X H, CHENG J, et al. Arc erosion behaviors of CuW70 electrical contact materials adding LaB6[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11):3147-3154(in Chinese). |