全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

功能化纳米SiO2-聚醚砜/BMI-酚醛环氧树脂复合材料的固化动力学与性能
Curing reaction kinetics and properties of functionalized nano SiO2-polyethersulfone/BMI- phenolic epoxy resin composites

DOI: 10.13801/j.cnki.fhclxb.20181108.004

Keywords: 4,4'-二氨基二苯甲烷(DDM),双马来酰亚胺(BMI),酚醛环氧树脂(F51),SiO2,力学性能,耐热性
4
,4'-diamino diphenyl methane (DDM),bismaleimide (BMI),phenolic epoxy resin (F51),SiO2,mechanical properties,heat-resistant properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

以4,4’-二氨基二苯甲烷(DDM)为固化剂、双马来酰亚胺(BMI)和酚醛环氧树脂(F51)为基体、聚醚砜(PES)为增韧剂、硅烷偶联剂KH560功能化纳米SiO2(KH-SiO2)为改性剂,采用原位聚合法制备了KH-SiO2-PES/BMI-F51复合材料,并通过非等温DSC确定了复合材料的固化工艺及固化反应动力学。根据Kissinger方程和Ozawa方程求得体系的表观活化能分别为96.03 kJ/mol和99.18 kJ/mol。FTIR测试结果表明:KH-SiO2改性效果良好,不饱和双键和环氧基特征峰消失,BMI中C=C双键和F51中环氧基在DDM作用下参与了体系的固化反应。SEM结果表明:PES树脂和KH-SiO2含量适当时,PES树脂和KH-SiO2在树脂基体中分散均匀,断裂纹不规则杂乱发展,KH-SiO2-PES/BMI-F51复合材料呈韧性断裂。力学性能测试和热失重测试表明:当PES含量为4wt%,KH-SiO2含量为1.5wt%时,KH-SiO2-PES/BMI-F51复合材料的弯曲强度、弯曲模量和冲击强度分别为156.23 MPa、4.18 GPa和20.89 kJ/m2,较BMI-F51基体分别提高了49.7%、29.4%和82.8%;KH-SiO2-PES/BMI-F51复合材料的热分解温度为393.1℃,残重率为50%时,分解温度高达523.1℃,耐热性十分优异。KH-SiO2-PES/BMI-F51复合材料的力学性能和耐热性有了较大提高,为拓展F51及BMI的应用范围提供了一定的理论数据。 With 4,4'-diamino diphenyl methane (DDM) as the curing agent, bismaleimide (BMI) and phenolic epoxy resin (F51) as the matrix, polyethersulfone (PES) as the toughening agent and functionalized nano SiO2 by silane coupling agent KH560(KH-SiO2) as the modifier, the KH-SiO2-PES/BMI-F51 composites were prepared by in-situ polymerization method, and the curing process and reaction curing kinetics were determined by non-isothermal DSC. The apparent activation energy of KH-SiO2-PES/BMI-F51 composites are 96.03 kJ/mol and 99.18 kJ/mol according to Kissinger equation and Ozawa equation, respectively. The FTIR results reveal that the surface modification of KH-SiO2 is favourable, the characteristic peaks of unsaturated double bond and epoxy group disappear, and the C=C double bond in BMI and epoxy group in F51 are involved in the curing reaction of KH-SiO2-PES/BMI-F51 composites under the effect of DDM. The SEM images exhibit that PES resin and KH-SiO2 uniformly disperse in the resin matrix when the content of PES resin and KH-SiO2 are appropriate, the broken cracks develop irregularly and the material exhibits ductile fracture. The mechanical performances and thermogravimetric properties show that bending strength, bending modulus and impact strength of KH-SiO2-PES/BMI-F51composites are 156.23 MPa, 4.18 GPa and 20.89 kJ/m2, when the mass fraction of PES and KH-SiO2 are 4wt% and 1.5wt%, which are 49.7%, 29.4% and 82.8% higher than that of BMI-F51 matrix, respectively. The thermal decomposition temperature of KH-SiO2-PES/BMI-F51 composites is 393.1℃, and the temperature at the residual mass of 50% reaches 523.1℃, the heat-resistant property is excellent. The mechanical properties and heat-resistant properties of KH-SiO2-PES/BMI-F51 composites are greatly improved, which provides theoretical data for expanding the application range of F51 and BMI. 国家自然科学基金(21604019);哈尔滨创新人才专项(2015RAXXJ029

References

[1]  SUN T, FAN H Y, ZHUO Q, et al. Covalent incorporation of aminated carbon nanotubes into epoxy resin network[J]. High Performance Polymers, 2014, 26(8):892-899.
[2]  CHEN B H, YUAN L, GUAN Q B, et al. Preparation and mechanism of shape memory bismaleimide resins with high transition temperature, high toughness and good processability[J]. Journal of Materials Science, 2018, 53(15):10798-10811.
[3]  ZHANG L Q, MA N, WANG Y Y, et al. Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence[J]. Journal of Composite Materials, 2016, 50(29):4135-4146.
[4]  WANG T, WANG J, HUO S, et al. Preparation and flame retardancy of DOPO-based epoxy resin containing bismaleimide[J]. High Performance Polymers, 2016, 28(9):1090-1095.
[5]  国家质量技术监督局. 塑料试样状态调节和试验的标准环境:GB/T 2918-1998[S]. 北京:中国标准出版社, 1998.Nation Bureau of Technical Supervision. Standard environment for state regulation and testing of plastic samples:GB/T 2918-1998[S]. Beijing:China Standards Press, 1998(in Chinese).
[6]  KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[7]  OZAWA A. Kinetics analysis of derivative curves in thermal analysis[J]. Journal of Thermal Analysis, 1970, 2(3):301-324.
[8]  白孟瑶. 聚醚砜/纳米二氧化硅改性环氧树脂胶黏剂的制备及性能研究[D]. 哈尔滨:哈尔滨理工大学, 2011.BAI M Y. Preparation and study on properties of epoxy resin modified by poly(ether sulfone)/nano-silica[D]. Harbin:Harbin University of Science and Technology, 2011(in Chinese).
[9]  LI S P, LIN Q, HOU H J, et al. Mechanical characterization of epoxy composites with glass fibers grafted by hyperbranched polymer with amino terminal groups[J]. Polymer Bulletin, 2016, 73(11):2947-2960.
[10]  HASHEMI S A, MOUSAVI S M. Effect of bubble based degradation on the physical properties of single wall carbon nanotube/epoxy resin composite and new approach in bubbles reduction[J]. Composites Part A:Applied Science and Manufacuring, 2016, 90:457-469.
[11]  GUNEYISI E, GESOGLU M, AZEZ O A, et al. Physico-mechanical properties of self-compacting concrete containing treated cold-bonded fly ash lightweight aggregates and SiO2 nano-particles[J]. Construction and Buiding Materials, 2015, 101:1142-1153.
[12]  SATO K, LSHⅡ K, OAKI Y, et al. Polymer-assisted shapeable synthesis of porous frameworks consisting of silica nanoparticles with mechanical property tuning[J]. Polymer Journal, 2017, 49(12):825-830.
[13]  YUAN Z K, YU J H, HE Z H, et al. Improved thermal properties of epoxy composites filled with thermotropic liquid crystalline epoxy grafted aluminum nitride[J]. Fibers and Polymers, 2014, 15(12):2581-2590.
[14]  XU Y J, CHEN L, RAO W H, et al. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property[J]. Chemical Engineering Journal, 2018, 347:223-232.
[15]  沈小军, 孟令轩, 付绍云. 石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能[J]. 复合材料学报, 2015, 32(1):21-26.SHEN X J, MENG L X, FU S Y. Cryogenic mechanical properties of epoxy composites synergistically reinforced by graphene-multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1):21-26(in Chinese).
[16]  HOU T H, MILLER S G, WILLIAMS T S, et al. Out-of-autoclave processing and properties of bismaleimide composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(2):137-149.
[17]  ZUO Z, YANG Y L, SONG L Z, et al. Miscibility analysis of polyethersulfone and polytetrafluoroethylene using the molecular dynamics method[J]. Fibers and Polymers, 2015, 16(3):510-521.
[18]  ZHANG X G, LIU Z J, ZHANG X Y, et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface[J]. Chemical Engineering Journal, 2018, 343:699-707.
[19]  李鸿岩, 刘宁, 费明, 等. 双马来酰亚胺改性环氧/二氨基二苯甲烷固化体系的性能研究[J]. 绝缘材料, 2012, 45(6):46-50.LI H Y, LIU N, FEI M, et al. Properties study of epoxy/diamio diphenylmethane curing system modified by bismaleimide[J]. Insulating Materials, 2012, 45(6):46-50(in Chinese).
[20]  国家质量监督检验检疫总局. 树脂浇铸体性能试验方法:GB/T 2567-2008[S]. 北京:中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine. Test methods for properties of resin casting boby:GB/T 2567-2008[S]. Beijing:China Standards Press, 2008(in Chinese).
[21]  LIU M, MEYER A S, FERNANDO D, et al. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites[J]. Composites Part A:Applied Science and Manufacuring, 2016, 90:724-735.
[22]  RAHMANIAN S, SURAYA A R, ROSHANRAVAN B, et al. The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube-silica-reinforced epoxy composite[J]. Materials & Design, 2015, 88:227-235.
[23]  陈宇飞, 代起望, 滕成君, 等. 超临界氧化铝/聚醚砜-BMI-BBA-BBE复合材料的微观结构与耐热性[J]. 复合材料学报, 2015, 32(3):665-672.CHEN Y F, DAI Q W, TENG C J, et al. Microstructure and heat-resistance of SCE-Al2O3/PES-MBAE composite[J]. Acta Materiae Compositae Sinica, 2015, 32(3):665-672(in Chinese).
[24]  AGRAWAL A, SATAPATHY A. Thermal and dielectric behavior of epoxy composites filled with ceramic micro particulates[J]. Journal of Composite Materials, 2014, 48(30):3755-3769.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133