|
- 2019
壳聚糖改性地聚合物的力学及吸附性能
|
Abstract:
采用壳聚糖增韧改性矿渣基地聚合物,研究了壳聚糖掺量对矿渣基地聚合物强度与弯曲韧性、吸附重金属离子性能的影响规律,采用FTIR、NMR、SEM及EDS等测试手段揭示了壳聚糖对矿渣基地聚合物的改性机制。结果表明,与空白样相比,壳聚糖掺量(与矿粉质量比)为2%的矿渣基地聚合物28天弯曲韧性系数提高497.22%,对Pb2+、Cr3+的吸附效率分别提高68.89%、81.45%。壳聚糖在分子层面(C—O—Si键的形成及[SiO4]聚合度的降低)及亚微观层面(三维互穿网络结构的形成)对矿渣基地聚合物进行增韧改性。壳聚糖自身较高的吸附性及低Ca/Si比C—S—H凝胶数量的增加,是矿渣基地聚合物吸附性能显著提升的关键。 The chitosan is used to improve the toughness and the adsorption of heavy metal ions of slag based geopolymer. The effects of chitosan content on the strength, flexural toughness and the adsorption of heavy metal ions of slag based geopolymer were focused, and FTIR, NMR, SEM and EDS was employed to explore the modification mechanisms of chitosan on slag based geopolymer. The results show that the 28 days flexural toughness coefficient of the slag based geopolymer with addition of 2% chitosan increases by 497.22% and its adsorption efficiency of Pb2+ and Cr3+ increases by 68.89%, 81.45%, respectively, compared with the blank sample. The chitosan can modify microstructures of the slag based geopolymer both in the molecular level, which is the formation of the C-O-Si bond and the reduction of polymerization degree of[SiO4], and in submicroscopic level, which is the formation of three-dimensional interpenetrating network structure of chitosan and slag based geopolymer. The high adsorption of chitosan and the increase of the C-S-H gel with low Ca/Si ratio are the main reason for markedly enhancement of the adsorption capacity of the slag based geopolymer. 国家自然科学基金(51402226);科技部科技基础型工作专项(2014FY110900);中央高校基础科研业务费(20181049701003;2018-CL-A1-33);国家大学生创新创业训练计划项目基金(201810497012);武汉理工大学自主创新研究基金(2018-CL-A1-33;2019-CL-A1-33
[1] | CHEN X, WANG J, ZHU G R, et al. Mechanical properties and mechanisms of polyacrylamide-modified granulated blast furnace slag-based geopolymer[J]. Journal of Materials in Civil Engineering, 2019, 31(1):04018347. |
[2] | 王茹, 王培铭, 彭宇. 三种方法表征丁苯乳液水泥砂浆韧性的对比[J]. 建筑材料学报, 2010, 13(3):390-394.WANG Ru, WANG Peiming, PENG Yu. Comparison of three characterization methods for flexibility of SBR latex-modified cement mortar[J]. Journal of Building Materials, 2010, 13(3):390-394(in Chinese). |
[3] | 赵书言, 周浩然, 赵蕊. 壳聚糖缓释微球的制备与表征[J]. 化学与黏合, 2011, 33(2):35-38.ZHAO Shuyan, ZHOU Haoran, ZHAO Rui. The preparation and characterization of chitosan sustained release microspheres[J]. Chemistry and Adhesion, 2011, 33(2):35-38(in Chinese). |
[4] | PAULA A J, STEFANI D, SOUZA A G, et al. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds[J]. Chemistry, 2011, 17:3228. |
[5] | HU C L, HAN Y G, GAO Y Y, et al. Property investigation of calcium-silicate-hydrate (C-S-H) gel in cementitious composites[J]. Materials Characterization, 2014, 95:129-139. |
[6] | 范明霞, 童仕唐. 活性炭孔隙结构对重金属离子吸附性能的影响[J]. 功能材料, 2016, 47(1):1012-1016.FAN Mingxia, TONG Shitang. Effect of pore structure of activated carbon on heavy metal ions adsorption performance[J]. Journal of Functional Materials, 2016, 47(1):1012-1016(in Chinese). |
[7] | HOLMES R R, HART M L, KEVERN J T. Heavy metal removal capacity of individual components of permeable reactive concrete[J]. Journal of Contaminant Hydrology, 2017, 196(2017):52-61. |
[8] | DAVIDOVITS J. Geopolymers:Man-made rock geosynthesis and the resultion development of very early high strength cement[J]. Journal of Materials Education, 1994, 16(2-3):91-137. |
[9] | DAVIDOVITS J. Recent progresses in concretes for nuclear waste and uranium waste containment[J]. Concrete International, 1994, 16(12):53-58. |
[10] | 施惠生, 夏明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展[J]. 硅酸盐学报, 2013, 41(7):972-980.SHI Huisheng, XIA Ming, GUO Xiaolu. Research development on mechanism of fly ash-based geopolymer and effect of each component[J]. Journal of the Chinese Ceramic Society, 2013, 41(7):972-980(in Chinese). |
[11] | CHEN X, ZHOU M K, SHEN W G, et al. Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers[J]. Construction and Building Materials, 2018, 190:680-690. |
[12] | 阚鑫禹, 薛平, 贾明印, 等. 聚乙烯醇改性地质聚合物复合材料的性能研究[J]. 矿产综合利用, 2018(3):125-128, 51.KAN Xinyu, XU Ping, JIA Mingyin, et al. Study on the properties of polyvinyl alcohol modified geopolymer compo-sites[J]. Multipurpose Utilization of Mineral Resources, 2018(3):125-128, 51(in Chinese). |
[13] | ALHARAHSHEH M S, ALZBOON K, ALMAKHADMEH L, et al. Fly ash based geopolymer for heavy metal removal:A case study on copper removal[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):1669-1677. |
[14] | 张毅, 张转玲, 黎淑婷, 等. 壳聚糖对重金属离子的吸附性能[J]. 天津工业大学学报, 2016, 35(3):16-20.ZHANG Yi, ZHANG Zhuanling, LI Shuting, et al. Adsorption of heavy metal ions by chitosan[J]. Journal of Tianjin Polytechnic University, 2016, 35(3):16-20(in Chinese). |
[15] | CHENG T W, LEE M L, KO M S, et al. The heavy metal adsorption characteristics on metakaolin-based geopolymer[J]. Applied Clay Science, 2012, 56:90-96. |
[16] | GUO X L, SHI H S, DICK W A. Compressive strength and microstructural characteristics of class C fly ash geopolymer[J]. Cement and Concrete Composites, 2010, 32(2):142-147. |
[17] | GAN M, TOMAR V. Role of length scale and temperature in indentation induced creep behavior of polymer derived Si-C-O ceramics[J]. Materials Science and Engineering:A, 2010, 527(29-30):7615-7623. |
[18] | 李霞, 邢峰, 刘斯凤. 地聚合物-碱废渣复合胶凝材料抗压强度的影响因素分析[J]. 硅酸盐学报, 2009, 37(1):120-124.LI Xia, XING Feng, LIU Sifeng. Regression model and analysis of factors contributing to the compressive strength of geopolymer-alkaline activated byproducts composite materials[J]. Journal of the Chinese Ceramic Society, 2009, 37(1):120-124(in Chinese). |
[19] | CHEN X, ZHU G R, ZHOU M K, et al. Effect of organic polymers on the properties of slag-based geopolymers[J]. Construction and Building Materials, 2018, 167:216-224. |
[20] | CHEN X, ZHU G R, WANG J, et al. Effect of polyacrylic resin on mechanical properties of granulated blast furnace slag based geopolymer[J]. Journal of Non-Crystalline Solids, 2018, 481:4-9. |
[21] | LóPEZ F J, SUGITA S, TAGAYA M, et al. Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation[J]. Journal of Materials Science and Chemical Engineering, 2014, 02(7):16-27. |
[22] | 董磊, 乔俊莲, 张普, 等. 改性壳聚糖混凝去除太湖藻研究[J]. 环境工程, 2011, 29(5):48-51.DONG Lei, QIAO Junlian, ZHANG Pu, et al. Flocculation and removal of blue algae in Taihu lake using modified chitosan[J]. Environmental Engineering, 2011, 29(5):48-51(in Chinese). |
[23] | SUN S L, WANG A Q. Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(Ⅱ) as template ion[J]. Reactive & Functional Polymers(S1381-5148), 2006, 66:819-826. |
[24] | SUN S L, WANG A Q. Adsorption kinetics of Cu(Ⅱ) ions using N, O-carboxymethyl-chitosan[J]. Journal of Hazardous Materials(S0304-3894), 2006, B131:103-111. |
[25] | SUN S L, WANG A Q. Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu(Ⅱ) as template[J]. Separation and Purification Technology(S1383-5866), 2006, 49:197-204. |
[26] | SUN S L, WANG L, WANG A Q. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(Ⅱ) as template ions[J]. Journal of Hazardous Materials(S0304-3894), 2006, B136:930-937. |
[27] | 国家质量技术监督局. 水泥胶砂强度检验方法(ISO法):GB/T 17671-1999[S]. 北京:中国标准出版社, 1999.The State Buroau of Quality and Technical Supervision. Method of testing cements-Determination of strength:GB/T 17671-1999[S]. Beijing:Standards Press of China, 1999(in Chinese). |
[28] | JSCE. Method of test for flexural strength and flexural toughness of steel-fiber-reinforced concrete:JSCE-SF4[S]. Tokyo:JSCE, 1984. |
[29] | CHENG T W, LEE M L, KO M S, et al. The heavy metal adsorption characteristics on metakaolin-based geopolymer[J]. Applied Clay Science, 2012, 56:90-96. |
[30] | 董微砾, 陈学刚, 魏疆, 等. 乌鲁木齐市道路雨水径流重金属污染分析[J]. 环境工程, 2014, 5:105-110.DONG Weili, CHEN Xuegang, WEI Jiang, et al. Characteristics of heavy metal pollution in road-runoff in Urumqi city[J]. Environmental Engineering, 2014, 5:105-110(in Chinese). |
[31] | YANG J, JIANG G L. Experimental study on properties of pervious concrete pavement materials[J]. Cement and Concrete Research, 2003, 33(3):381-386. |
[32] | ALALEA K, HONG S W, CHRISTOPHER R C. Defining clogging potential for permeable concrete[J]. Journal of Environmental Management, 2018, 220:44-53. |
[33] | 秦新. 基于海绵城市的透水混凝土面层及水泥稳定碎石基层的路用性能和净水特性研究[D]. 重庆:重庆交通大学, 2017.QIN Xin. Study on pavement performance and water purification characteristics of pervious concrete surface layer and cement stabilized macadam base layer based on sponge cities[D]. Chongqing:Chongqing Jiaotong University, 2017(in Chinese). |
[34] | 王俊岭, 刘栓, 张玉玉, 等. 透水混凝土铺装常用材料对径流污染物的吸附性能试验研究[J]. 混凝土, 2016(10):143-147.WANG Junling, LIU Shuan, ZHANG Yuyu, et al. Experiment on adsorptive capacity of permeable concrete pavement materials for runoff pollutants[J]. Concrete, 2016(10):143-147(in Chinese). |
[35] | KIM G M, JANG J G, KHALID H R, et al. Water purification characteristics of pervious concrete fabricated with CSA cement and bottom ash aggregates[J]. Construction and Building Materials, 2017, 136:1-8. |
[36] | KIM D, LAI H, CHILINGAR G V. Geopolymer formation and its unique properties[J]. Environmental Geology, 2006, 51(1):103-111. |
[37] | ZHANG S Z, GONG K C, LU J W. Novel modification method for inorganic geopolymer by using water soluble organic polymers[J]. Materials Letters, 2004, 58(7-8):1292-1296. |