全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

钒掺杂对SrTiO3光学性质及光催化性能的影响
Effect of doping vanadium on optical and photocatalytic properties of SrTiO3

DOI: 10.13801/j.cnki.fhclxb.20190417.002

Keywords: 钒掺杂,SrTiO3,光学性质,光催化活性,氧空位
vanadium doping
,SrTiO3,optical properties,photocatalytic activity,oxygen vacancy

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水热法合成了掺钒量分别为0 mol%、0.5 mol%、1.0 mol%的SrTiO3(编号依次为S-0、S-0.5、S-1.0),通过XRD、SEM、BET比表面积分析、电子顺磁共振谱(EPR)、XPS、FTIR、UV-vis吸收光谱及PL等方法测试了材料的结构特征及光学性质,并采用NO光催化氧化及CO2光催化还原对比了掺钒前后SrTiO3的光催化活性的变化。研究结果表明,钒对SrTiO3中的Ti位进行取代掺杂;掺钒导致SrTiO3的可见光响应增强,氧空位减少;掺钒量为0.5 mol%的S-0.5比未掺钒的S-0在反应初期具有更好的光催化效果,但在反应后期S-0.5的催化活性衰减较快。综合结果显示,氧空位是光催化还原CO2反应过程中的重要活性位点,掺钒后氧空位减少导致活性位点不足是光催化反应后期掺钒SrTiO3材料活性衰减的主要原因。 Pure SrTiO3, 0.5 mol% and 1.0 mol% vanadium doped SrTiO3 were synthesized through hydrothermal method (Noted as S-0, S-0.5, S-1.0 successively). Characterizations including XRD、SEM、BET specific surface area analysis、electron paramagnetic resonance(EPR)、XPS、FTIR、UV-vis absorption spectra and PL offered information about structural features and optical properties of as-prepared catalysts. NO photo-oxidation reaction and CO2 photoreduction reaction were employed to evaluate the photocatalytic activity of the catalysts. As the study results reveale, the visible-light response improves, and the density of oxygen vacancy decreases as vanadium was doped into Ti-site; S-0.5, the SrTiO3 sample with 0.5 mol% vanadium doping, shows a better catalytic activity than S-0 at the preliminary stage, but its catalytic activity decays subsequently. According to the characterizations and tests, it could be speculated that oxygen vacancy is the active site for the CO2 photoreduction reaction, and the insufficient of active sites resulting from the decrease of oxygen vacancy after vanadium doping is the key reason for the decay of photocatalytic activity. 国家自然科学基金(21473248

References

[1]  GRABOWSKA E. Selected perovskite oxides:Characterization, preparation and photo-catalytic properties-A review[J]. Applied Catalysis B Environmental, 2016, 186(6):97-126.
[2]  IWASHINA K, KUDO A. Rh-Doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation[J]. Journal of the American Chemical Society, 2011, 42(50):13272-13275.
[3]  CHEN W, LIU H, LI X, et al. Polymerizable complex synthesis of SrTiO3:(Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light[J]. Applied Catalysis B Environmental, 2016, 192:145-151.
[4]  KONTA R, ISHII T, KATO H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation[J]. Cheminform, 2004, 35(37):8992-8995.
[5]  ZHU Y, DAI Y, WEI W, et al. First principles study of Ag-doped, Nb-doped and Ag/Nb doped SrTiO3[J]. Rare Metals, 2011, 30(1):177-182.
[6]  ASAI R, NEMOTO H, JIA Q, et al. A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting[J]. Chemical Communications, 2014, 50(19):2543-2546.
[7]  BI Y Q, EHSAN M F, JIN J R, et al. Synthesis of Cr-doped SrTiO3 photocatalyst and its application in visible-light-driven transformation of CO2 into CH4[J]. Journal of CO2 Utilization, 2015, 12:43-48.
[8]  KAWASAKI S, TAKAHASHI R, AKAGI K, et al. Electronic structure and photoelectrochemical properties of an ir-doped SrTiO3 photocatalyst[J]. Journal of Physical Chemistry C, 2014, 118(35):20222-20228.
[9]  WANG J, YIN S, KOMATSU M, et al. Preparation and characterization of nitrogen doped SrTiO3, photocatalyst[J]. Journal of Photochemistry & Photobiology A Chemistry, 2004, 165(1):149-156.
[10]  XIAN T, YANG H, DI L, et al. Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity[J]. Nanoscale Research Letters, 2014, 9(1):327-335.
[11]  HE G L, ZHONG Y H, CHEN M J, et al. One-pot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production[J]. Journal of Molecular Catalysis A Chemical, 2016, 423:70-76.
[12]  LI S, DONG G, HAILILI R, et al. Effective photocatalytic H2O2, production under visible light irradiation at g-C3N4, modulated by carbon vacancies[J]. Applied Catalysis B Environmental, 2016, 190(8):26-35.
[13]  YU H, WANG J, YAN S, et al. Elements doping to expand the light response of SrTiO3[J]. Journal of Photochemistry & Photobiology A Chemistry, 2014, 275(2014):65-71.
[14]  ZHAO W, ZHONG Q. The effect of oxygen vacancies and fluorine dopant over adsorption behaviours of V2O5/TiO2 for NO removal[J]. Rsc Advances, 2014, 4(11):5653-5659.
[15]  JING P, LAN W, SU Q, et al. High photocatalytic activity of V-doped SrTiO3 porous nanofibers produced from a combined electrospinning and thermal diffusion process[J]. Beilstein Journal of Nanotechnology, 2015, 6(1):1281-1286.
[16]  WANG Y, ZHAO J, WANG T, et al. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2, catalysts:Surface species and their reactivity[J]. Journal of Catalysis, 2016, 337(5):293-302.
[17]  ZHAO J, WANG Y, LI Y, et al. Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts[J]. Catalysis Science & Technology, 2016, 6(22):7967-7975.
[18]  FAN X, YUE X, LUO J, et al. Facile synthesis of carbon-Bi2WO6, with enhanced visible-light photocatalytic activities[J]. Journal of Nanoparticle Research, 2016, 18(3):1-9.
[19]  GUO J, OUYANG S, LI P, et al. A new heterojunction Ag3PO4/Cr-SrTiO3, photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation[J]. Applied Catalysis B Environmental, 2013, 134-135:286-292.
[20]  WANG J, LI H, LI H, et al. Preparation and photocatalytic activity of visible light-active sulfur and nitrogen co-doped SrTiO3[J]. Cheminform, 2009, 40(15):182-188.
[21]  XU L, WAN Y, XIE H, et al. Synthesis, surface structure and optical properties of double perovskite Sr2NiMo6, nanoparticles[J]. Applied Surface Science, 2016, 389:849-857.
[22]  REN F, LI H, WANG Y, et al. Enhanced photocatalytic oxidation of propylene over V-doped TiO2 photocatalyst:Reaction mechanism between V5+ and single-electron-trapped oxygen vacancy[J]. Applied Catalysis B Environmental, 2015, 176-177(2):160-172.
[23]  MASE A, SUGITA T, MORI M, et al. Study of vanadium-modified N/Si co-doped TiO2 in aqueous solution and its photocatalytic activity[J]. Chemical Engineering Journal, 2013, 225(6):440-446.
[24]  WU Q, CEN J, GOODMAN K R, et al. Understanding the interactions of CO2 with doped and undoped SrTiO3[J]. Chemsuschem, 2016, 9(14):1889-1897.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133