全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Cu-Cr粉体致密化颗粒变形及粒子流动三维数值模拟
Three-dimensional numerical simulation of deformation and particle flow of Cu-Cr powder densified particles

DOI: 10.13801/j.cnki.fhclxb.20190109.001

Keywords: Cu-Cr粉体,致密化,摩檫系数,应变,流动性
Cu-Cr powders
,densification,friction coefficient,strain,fluidity

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于MSC.Marc有限元软件对Cu-Cr粉体颗粒的单、双向致密化过程进行了细观数值模拟分析。研究了不同压制方式及摩檫系数对Cu-Cr粉体颗粒致密度及形貌变化的影响。结果表明:随着摩擦系数的增大,单向压制Cu-Cr粉体颗粒的致密化程度越高,摩擦系数为0.5时,单向压制的Cu-Cr粉体颗粒最高致密度为96.4040%;随着摩擦系数的减小,双向压制Cu-Cr粉体颗粒的致密化程度越高,在无摩擦理想条件下,双向压制Cu-Cr粉体颗粒致密度最高为89.1630%。在相同条件(摩擦系数、压制力)下,单向比双向压制Cu-Cr粉体颗粒有较高的流动性和致密度,Cu颗粒的应变量差值为1.3385,但双向致密化Cu-Cr粉体颗粒比单向压制的粒度均匀性好。模拟结果与实验结果相符合,验证了模型的准确性。 Based on MSC. Marc finite element software, the densification process of single and two-press Cu-Cr powder particles was microcosmic simulated and analyzed. The effects of different pressing methods and friction coefficients on the particle density and morphology of Cu-Cr powder particles were studied. The results show that with the increase of friction coefficient, the densification degree of unidirectional compacted Cu-Cr powder particles is higher. Under the condition of friction coefficient of 0.5, the maximum density of unidirectional compacted Cu-Cr powder particles is 96.4040%. With the decrease of friction coefficient, the densification degree of the two-way compacted Cu-Cr powder particles is higher. Under ideal condition without friction, the densification of the two-press compacted Cu-Cr powder particles is up to 89.1630%. Under the same conditions (friction coefficient and compressive force), unidirectional compaction has higher fluidity and density than bi-directional compaction, and the strain difference of Cu particles is 1.3385. However, the particle size uniformity of bi-directional compaction is better than that of unidirectional compaction. The simulation results are in agreement with the experimental results, which verifies the accuracy of the model. 株洲冶炼集团股份有限公司产学研重点项目(2040201255

References

[1]  刘秋晓, 王发展, 张院, 等. Cu-Cr二元合金宏观偏析与温度场的数值模拟[J]. 材料科学与工艺, 2016, 24(6):73-78.LIU Qiuxiao, WANG Fazhan, ZHANG Yuan, et al. Numerical simulation of macrosegregation and temperature field of Cu-Cr two binary alloy[J]. Materials Science and Technology, 2016, 24(6):73-78(in Chinese).
[2]  陈海鹏, 王发展. 钨铜合金粉热等静压致密化过程的有限元模拟[J]. 机械工程材料, 2017, 41(6):69-74.CHEN Haipeng, WANG Fazhan. Finite element simulation of hot isostatic pressing densification processfor W-Cu alloy powder[J]. Materials for Mechanical Engineering, 2017, 41(6):69-74(in Chinese).
[3]  蔡安辉, 熊翔, 刘咏, 等. 固结参数对热压成型铜基块体非晶合金力学性能的影响[J]. 中国有色金属学报(英文版), 2012, 22(8):2032-2040.CAI Anhui, XIONG Xiang, LIU Yong, et al. Effect of consolidation parameters on mechanical properties of Cu-based bulk amorphous alloy consolidated by hot pressing[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8):2032-2040(in Chinese).
[4]  TALEGHANI M A J, NAVAS E M R, SALEHI M, et al. Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures[J]. Materials Science & Engineering A, 2012, 534(2):624-631.
[5]  WOLLA D W, DAVIDSON M J, KHANRA A K. Prediction of ductile fracture initiation for powder metallurgical aluminum-copper preforms using FEM[J]. International Journal of Mechanical & Materials Engineering, 2015, 10(1):8.
[6]  GUO B, AO J, XU Y, et al. A Constitutive equation for the flow and densification behaviors of powder metallurgy Fe-0.5C-2Cu steel at elevated temperatures[J]. Steel Research International, 2017, 88:160024.
[7]  HARTHONG B, IMBAULT D, DOREMUS P. The study of relations between loading history and yield surfaces in powder materials using discrete finite element simulations[J]. Journal of the Mechanics & Physics of Solids, 2012, 60(4):784-801.
[8]  徐秉业. 塑性力学[M]. 北京:高等教育出版社, 1988:88-111.XU Bingye. Plastic mechanics[M]. Beijing:Higher Education Press, 1988:88-111(in Chinese).
[9]  冯超, 孙丹丹, 陈火红. 全新Marc实例教程与常见问题解析[M]. 北京:中国水利水电出版社, 2012:225-229.FENG Chao, SUN Dandan, CHEN Huohong. New Marc example tutorial and common problem analysis[M]. Beijing:China Water & Power Press, 2016:225-229(in Chinese).
[10]  石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 中国建筑工业出版社, 2015:149-160.SHI Chong, XU Weiya. Technique and practice of numerical simulation of particle flow[M]. Beijing:China Architecture & Building Press, 2015:149-160(in Chinese).
[11]  刘国承. 金属粉末热等静压致密化数值模拟与试验研究[D]. 武汉:华中科技大学, 2011.LIU Guocheng. Metal powders densification under hot isostatic pressing numerical simulation and experiment[D]. Wuhan:Huazhong University of Science and Technology, 2011(in Chinese).
[12]  杨朔. 碳化粒增强铝基复合粉体材料成形致密化的数值模拟[D]. 沈阳:东北大学, 2014.YANG Shuo. Numerical simulation on the compaction densification of particulate SIC reinforced aluminum powder composites[D]. Shenyang:Northeastern University, 2014(in Chinese).
[13]  王德广, 吴玉程, 焦明华, 等. 不同压制工艺对粉末冶金制品性能影响的有限元模拟[J]. 机械工程学报, 2008, 44(1):205-211.WANG Deguang, WU Yucheng, JIAO Minghua, et al. Finite element simulation of influence of different compacting processes on powder metallurgic products properties[J]. Journal of Mechanical Engineering, 2008, 44(1):205-211(in Chinese).
[14]  周洁. 粉末成形过程的计算机模拟[D]. 昆明:昆明理工大学, 2005.ZHOU Jie. Computer simulation of powder forming process[D]. Kunming:Kunming University of Science and Technology, 2005(in Chinese).
[15]  谷曼, 王德广, 焦明华, 等. 铁基粉末温压过程中的致密化[J]. 材料热处理学报, 2014, 35(6):15-19.GU Man, WANG Deguang, JIAO Minghua, et al. Densification of iron-based powder during warm compaction process[J]. Transactions of Materials and Heat Treatment, 2014, 35(6):15-19(in Chinese).
[16]  黄永强. 铁-碳-铜粉末冶金成形工艺的数值模拟[D]. 南京:南京理工大学, 2016.HUANG Yongqiang. Numerical simulation of iron-carbon-copper powder net-shape forming[D]. Nanjing:Nanjing University of Science and Technology, 2016(in Chinese).
[17]  董湘怀. 材料成形计算机模拟[M]. 北京:机械工业出版社, 2005:77-91.DONG Xianghuai. Computer simulation of material forming[M]. Beijing:China Machine Press, 2005:77-91(in Chinese).
[18]  WANG D G, WU Y C, JIAO M H. Research and simulation of influence of three-axial compaction on powder metallurgic products properties[J]. Acta Metallurgica Sinica(English Letters), 2009, 21(2):116-124.
[19]  李毅斌, 沈静. 粒度分布及助流剂对药物对乙酰氨基酚粉体流动性的影响[J]. 化工与医药工程, 2017(2):25-28.LI Yibin, SHEN Jing. Effects of particle size distribution and lubricant to flow-ability of paracetamol powder[J]. Chemical and Pharmaceutical Engineering, 2017(2):25-28(in Chinese).
[20]  尤萌萌. 铁——碳——铜粉末净成形工艺的数值模拟研究[D]. 南京:南京理工大学, 2017.YOU Mengmeng. Numerical simulation of iron-carbon-copper powder net-forming process[D]. Nanjing:Nanjing University of Science and Technology, 2017(in Chinese).
[21]  李虎兴. 压力加工过程的摩擦与润滑[M]. 北京:冶金工业出版社, 1993:128-150.LI Huxing. Friction and lubrication in pressure processing[M]. Beijing:Metallurgical Industry Press, 1993:128-150(in Chinese).
[22]  中华人民共和国国家标准化管理委员会. 致密烧结金属材料与硬质合金密度测定方法:GB/T3850-1983[S]. 北京:中国标准出版社, 1984.Standardization Administration of the People's Republic of China. Method for determination of density of dense sintered metal materials and cemented carbides:GB/T3850-1983[S]. Beijing:China Standard Press, 1984(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133